Skip to main content
Log in

Study of Kosterlitz-Thouless Transition with Random Chemical Potential Using Quantum Monte Carlo Simulations

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Disordered Bose systems have been investigated extensively theoretically and experimentally. While most studies are made for three-dimensional systems, we focus our studies on two-dimensional systems. In two-dimensional Bose systems, it is well-known that Kosterlitz-Thouless (KT) transition occurs. Our motivation is to investigate the effects of randomness on KT transition. The hardcore-Bose-Hubbard model with random chemical potential is investigated using quantum Monte Carlo simulations. Random distribution is assumed to obey the Gaussian distribution, and superfluid density and correlation functions are calculated. By changing the dispersion of the Gaussian distribution, we found that the transition temperature decreases as the dispersion increases. We obtained the phase diagram showing the superfluid (KT) phase and the disorder phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  2. Y. Matsushita, J. Taniguchi, R. Toda, H. Ikegami, T. Matsushita, M. Hieda, N. Wada, J. Low Temp. Phys. 150, 342–346 (2008)

    Article  ADS  Google Scholar 

  3. M.H.W. Chan, K.I. Blum, S.Q. Murphy, G.K.S. Wong, J.D. Reppy, Phys. Rev. Lett. 61, 1950 (1988)

    Article  ADS  Google Scholar 

  4. K. Shirahama, K. Yamamoto, Y. Shibayama, J. Phys. Soc. Jpn. 77, 111011 (2008)

    Article  ADS  Google Scholar 

  5. J.E. Lye, L. Fallani et al., Phys. Rev. Lett. 95, 070401 (2005)

    Article  ADS  Google Scholar 

  6. T. Schulte, S. Drenkelforth et al., Phys. Rev. Lett. 95, 17041 (2005)

    Article  Google Scholar 

  7. M. White, M. Pasienski et al., Phys. Rev. Lett. 102, 055301 (2009)

    Article  ADS  Google Scholar 

  8. P.A. Crowell, F.W. Van Keuls, J.D. Reppy, Phys. Rev. B 55, 12620 (1996)

    Article  ADS  Google Scholar 

  9. K. Shirahama, M. Kubuta et al., Phys. Rev. B 64, 1541 (1990)

    Article  ADS  Google Scholar 

  10. V. Kotsubo, G.A. Williams, Phys. Rev. B 33, 6106 (1988)

    Article  ADS  Google Scholar 

  11. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    ADS  Google Scholar 

  12. D.J. Bishop, J.D. Reppy, Phys. Rev. Lett. 40, 1727 (1978)

    Article  ADS  Google Scholar 

  13. K. Harada, N. Kawashima, J. Phys. Soc. Jpn. 67, 2768 (1998)

    Article  ADS  Google Scholar 

  14. M. Paczuski, M. Kardar, Phys. Rev. B. 43, 8331 (1991)

    Article  ADS  Google Scholar 

  15. J. Maucoust, D.R. Grempel, Phys. Rev. B 56, 2572 (1997)

    Article  ADS  Google Scholar 

  16. J. Machta, R.A. Guyer, Phys. Rev. Lett. 60, 2054 (1988)

    Article  ADS  Google Scholar 

  17. W. Krauth, N. Trivedi, D. Ceperly, Phys. Rev. Lett. 67, 2307 (1991)

    Article  ADS  Google Scholar 

  18. M. Makivić, N. Trivedi, S. Ullah, Phys. Rev. Lett. 71, 2307 (1993)

    Article  ADS  Google Scholar 

  19. L. Dang, M. Boninsegni, L. Pollet, Phys. Rev. B 79, 214529 (2009)

    Article  ADS  Google Scholar 

  20. E.L. Pollock, D.M. Ceperley, Phys. Rev. B 36, 8343 (1987)

    Article  ADS  Google Scholar 

  21. O.F. Syljuåsen, A.W. Sandvik, Phys. Rev. E 66, 046701 (2002)

    Article  ADS  Google Scholar 

  22. N. Kawashima, K. Harada, J. Phys. Soc. Jpn. 73, 1379 (2004)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kuroyanagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroyanagi, H., Tsukamoto, M. & Tsubota, M. Study of Kosterlitz-Thouless Transition with Random Chemical Potential Using Quantum Monte Carlo Simulations. J Low Temp Phys 158, 231–236 (2010). https://doi.org/10.1007/s10909-009-9949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-9949-0

Keywords

Navigation