Skip to main content
Log in

Quantum Fluids in Nanotubes: A Quantum Monte Carlo Approach

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We review quantum Monte Carlo results on energetic and structure properties of quantum fluids adsorbed in a bundle of carbon nanotubes. Using realistic interatomic interactions the different adsorption sites that a bundle offer are accurately studied and compared in some cases with strictly one-dimensional geometries. The study is performed quite extensively for 4He and restricted to the inner part of a single nanotube for H2 and D2. From a theoretical point of view, nanotubes open the real possibility of a quasi-one-dimensional confinement where to study quantum fluids in extremely reduced dimensionality. The results obtained show that in the narrowest configurations the system is nearly one-dimensional reinforcing the interest on the physics of one-dimensional quantum fluids. Experimental confirmation of the theoretical results obtained is still not in a satisfactory situation due to the difficulties on extracting from the data the dominant adsorption sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. P.J. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  3. S. Reich, C. Thompsen, J. Maultzsch, Carbon Nanotubes (Wiley, Berlin, 2004)

    Google Scholar 

  4. C. Journat, P. Bernier, Appl. Phys. A 67, 1 (1998)

    Article  ADS  Google Scholar 

  5. M.J. Bronikowki, P.A. Willis, D.T. Colbert, K.A. Smith, R.E. Smalley, J. Vac. Sci. Technol. A 19, 1800 (2001)

    Article  ADS  Google Scholar 

  6. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes (Springer, Berlin, 2001)

    Book  Google Scholar 

  7. M.M. Calbi, M.W. Cole, S.M. Gatica, M.J. Bojan, G. Stan, Rev. Mod. Phys. 73, 857 (2001)

    Article  ADS  Google Scholar 

  8. J. Boronat, J. Casulleras, Phys. Rev. B 49, 8920 (1994)

    Article  ADS  Google Scholar 

  9. R.A. Aziz, F.R. W McCourt, C.C.K. Wong, Mol. Phys. 61, 1487 (1987)

    Article  ADS  Google Scholar 

  10. I.F. Silvera, V.V. Goldman, J. Chem. Phys. 69, 4209 (1978)

    Article  ADS  Google Scholar 

  11. G. Stan, M.W. Cole, Surf. Sci. 395, 280 (1998)

    Article  ADS  Google Scholar 

  12. G. Stan, M.W. Cole, J. Low Temp. Phys. 110, 539 (1998)

    Article  Google Scholar 

  13. G. Stan, M.J. Bojan, S. Curtarolo, S.M. Gatica, M.W. Cole, Phys. Rev. B 62, 2173 (2000)

    Article  ADS  Google Scholar 

  14. M.C. Gordillo, J. Boronat, J. Casulleras, Phys. Rev. B 61, R878 (2000)

    Article  ADS  Google Scholar 

  15. R.A. Aziz, V.P.S. Nain, J.S. Carley, W.L. Taylor, G.T. McConville, J. Chem. Phys. 70, 4330 (1979)

    Article  ADS  Google Scholar 

  16. M. Boninsegni, S. Moroni, J. Low Temp. Phys. 118, 1 (2000)

    Article  Google Scholar 

  17. E. Krotscheck, M.D. Miller, Phys. Rev. B 60, 13038 (1999)

    Article  ADS  Google Scholar 

  18. M.C. Gordillo, J. Boronat, J. Casulleras, Phys. Rev. Lett. 85, 2348 (2000)

    Article  ADS  Google Scholar 

  19. M.C. Gordillo, J. Boronat, J. Casulleras, Phys. Rev. B 65, 014503 (2002)

    Article  ADS  Google Scholar 

  20. L. Brualla, M.C. Gordillo, Phys. Rev. B 68, 075423 (2003)

    Article  ADS  Google Scholar 

  21. M.C. Gordillo, J. Boronat, J. Casulleras, in Proceedings of the 14th International Conference Recent Progress in Many-Body Theories, ed. by Boronat J., Astrakharchick G.E., Mazzanti F. Series on Advances in Quantum Many Body Theory, vol. 11 (World Scientific, Singapore, 2008)

    Google Scholar 

  22. W. Teizer, R.B. Hallock, E. Dujardin, T.W. Ebbesen, Phys. Rev. Lett. 84, 1844 (2000)

    Article  ADS  Google Scholar 

  23. D.B. Mawhinney, V. Naumenko, A. Kuznetsova, J.T. Tates Jr., J. Liu, R.E. Smaley, Chem. Phys. Lett. 324, 213 (2000)

    Article  ADS  Google Scholar 

  24. E. Dujardin, T.W. Ebbesen, A. Krishnan, M.M.J. Treacy, Adv. Mat. 10, 611 (1998)

    Article  Google Scholar 

  25. A.J. Lu, B.C. Pan, Phys. Rev. Lett. 92, 105504 (2004)

    Article  ADS  Google Scholar 

  26. P.M. Ajayan, V. Ravikumar, J.C. Charlier, Phys. Rev. Lett. 81, 1437 (1998)

    Article  ADS  Google Scholar 

  27. A.V. Krasheninnikov, K. Nordlund, M. Sirviö, E. Salonen, J. Keinonen, Phys. Rev. B 63, 245405 (2001)

    Article  ADS  Google Scholar 

  28. S. Zhang, S.L. Mielke, R. Khare, D. Troya, R.S. Ruoff, G.C. Schatz, T. Belytschko, Phys. Rev. B 71, 115403 (2005)

    Article  ADS  Google Scholar 

  29. M.C. Gordillo, Phys. Rev. Lett. 96, 216102 (2006)

    Article  ADS  Google Scholar 

  30. M.C. Gordillo, Phys. Rev. B 76, 115402 (2007)

    Article  ADS  Google Scholar 

  31. M. Boninsegni, S.Y. Lee, V.H. Crespi, Phys. Rev. Lett. 86, 3360 (2001)

    Article  ADS  Google Scholar 

  32. J. Boronat, M.C. Gordillo, J. Casulleras, J. Low Temp. Phys. 126, 199 (2002)

    Article  Google Scholar 

  33. O.E. Vilches, communication to LT25

  34. M.W. Cole, V.H. Crespi, G. Stan, C. Ebner, J.M. Hartman, S. Moroni, M. Boninsegni, Phys. Rev. Lett. 84, 3883 (2000)

    Article  ADS  Google Scholar 

  35. M.C. Gordillo, J. Boronat, J. Casulleras, Phys. Rev. B 68, 125421 (2003)

    Article  ADS  Google Scholar 

  36. M.C. Gordillo, L. Brualla, S. Fantoni, Phys. Rev. B 70, 245420 (2004)

    Article  ADS  Google Scholar 

  37. M.C. Gordillo, J. Boronat, J. Casulleras, Phys. Rev. B 76, 193402 (2007)

    Article  ADS  Google Scholar 

  38. M. Rossi, D.E. Galli, L. Reatto, Phys. Rev. B 72, 064516 (2005)

    Article  ADS  Google Scholar 

  39. J. Tersoff, R.S. Ruoff, Phys. Rev. Lett. 73, 676 (1994)

    Article  ADS  Google Scholar 

  40. W. Teizer, R.B. Hallock, E. Dujardin, T.W. Ebbesen, Phys. Rev. Lett. 82, 5305 (1999)

    Article  ADS  Google Scholar 

  41. T. Wilson, A. Tyburski, M.R. DePies, O.E. Vilches, D. Becquet, M. Bienfait, J. Low Temp. Phys. 126, 403 (2002)

    Article  Google Scholar 

  42. S. Ramachandran, T.A. Wilson, D. Vandervelde, D.K. Holmes, O.E. Vilches, J. Low Temp. Phys. 134, 115 (2004)

    Article  ADS  Google Scholar 

  43. Y.H. Kahng, R.B. Hallock, E. Dujardin, T.W. Ebbesen, J. Low Temp. Phys. 126, 223 (2002)

    Article  Google Scholar 

  44. T. Wilson, O.E. Vilches, Physica B 329–333, 278 (2003)

    Article  Google Scholar 

  45. J.C. Lasjaunias, K. Biljakovic, J.L. Sauvajol, P. Monceau, Phys. Rev. Lett. 91, 025901 (2003)

    Article  ADS  Google Scholar 

  46. J.V. Pearce, M.A. Adams, O.E. Vilches, M.R. Johnson, H.R. Glyde, Phys. Rev. Lett. 95, 185302 (2005)

    Article  ADS  Google Scholar 

  47. S. Ramachandran, O.E. Vilches, Phys. Rev. B 76, 075404 (2007)

    Article  ADS  Google Scholar 

  48. S. Talapatra, V. Krungleviciute, A.D. Migone, Phys. Rev. Lett. 89, 246106 (2002)

    Article  ADS  Google Scholar 

  49. A. Siber, Phys. Rev. B 66, 205406 (2002)

    Article  ADS  Google Scholar 

  50. M. Aichinger, S. Kilić, E. Krotscheck, L. Vranješ, Phys. Rev. B 70, 155412 (2004)

    Article  ADS  Google Scholar 

  51. M.C. Gordillo, Phys. Rev. Lett. 101, 046102 (2008)

    Article  ADS  Google Scholar 

  52. M.C. Gordillo, J. Phys. Conf. Ser. 150, 032023 (2009)

    Article  ADS  Google Scholar 

  53. M.M. Calbi, S.M. Gatica, M.J. Bojan, M.W. Cole, J. Chem. Phys. 115, 9975 (2001)

    Article  ADS  Google Scholar 

  54. M.C. Gordillo, J. Boronat, Phys. Rev. Lett. 102, 085303 (2009)

    Article  ADS  Google Scholar 

  55. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377 (1997)

    Article  ADS  Google Scholar 

  56. F. Darkrim, D. Levesque, J. Chem. Phys. 109, 4981 (1998)

    Article  ADS  Google Scholar 

  57. M. Rzepka, P. Lamp, M.A. de la Casa-Lillo, J. Phys. Chem. B 102, 10894 (1998)

    Article  Google Scholar 

  58. Q. Wang, J.K. Johnson, J. Chem. Phys. 110, 577 (1999)

    Article  ADS  Google Scholar 

  59. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  60. S. Ijima, T. Ichihashi, Nature 363, 603 (1993)

    Article  ADS  Google Scholar 

  61. I.F. Silvera, V.V. Goldman, J. Chem. Phys. 69, 4209 (1978)

    Article  ADS  Google Scholar 

  62. E. Cheng, K.B. Whaley, J. Chem. Phys. 104, 3155 (1996)

    Article  ADS  Google Scholar 

  63. I.F. Silvera, Rev. Mod. Phys. 52, 393 (1980)

    Article  ADS  Google Scholar 

  64. M. Wagner, D.M. Ceperley, J. Low Temp. Phys. 94, 161 (1994)

    Article  ADS  Google Scholar 

  65. Q. Wang, S.R. Challa, D.S. Sholl, J.K. Johnson, Phys. Rev. Lett. 82, 956 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Boronat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordillo, M.C., Boronat, J. Quantum Fluids in Nanotubes: A Quantum Monte Carlo Approach. J Low Temp Phys 157, 296–323 (2009). https://doi.org/10.1007/s10909-009-9912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-9912-0

Keywords

PACS

Navigation