Skip to main content
Log in

Transition to Quantum Turbulence Generated by Thin Vibrating Wires in Superfluid 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report the turbulent transition in superfluid 4He generated by a vibrating wire as a function of its thickness. The response of a vibrating wire with a 3 μm diameter in superfluid 4He at 1.2 K reveals a hysteresis at the turbulent transition between an up sweep and a down sweep of driving force, while no hysteresis appears for wires with a thickness larger than 4.7 μm diameter. These results indicate that the 3 μm wire is efficient for reducing the number of vortex lines attached to it. A cover box and slow cooling also prevent vortex lines from attaching to a wire, resulting in a vortex-free vibrating wire. The effective mass of the vortex-free vibrating wire is almost constant in a wide range of velocities up to 400 mm/s; however, the wire density estimated from the resonance frequency is a half of the expected value of wire material, suggesting that a wire mass becomes lighter or a wire diameter becomes larger in the superfluid effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  2. J. Jäger, B. Schuderer, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995)

    Article  ADS  Google Scholar 

  3. H. Yano, A. Handa, H. Nakagawa, K. Obara, O. Ishikawa, T. Hata, M. Nakagawa, J. Low Temp. Phys. 138, 561 (2005)

    Article  ADS  Google Scholar 

  4. H. Yano, A. Handa, M. Nakagawa, K. Obara, O. Ishikawa, T. Hata, AIP Conf. Proc. 850, 195 (2006)

    Article  ADS  Google Scholar 

  5. R. Hänninen, M. Tsubota, W.F. Vinen, Phys. Rev. B 75, 064502 (2007)

    Article  ADS  Google Scholar 

  6. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature (Lond.) 441, 588 (2006)

    Article  ADS  Google Scholar 

  7. D.D. Awschalom, K.W. Schwarz, Phys. Rev. Lett. 52, 49 (1984)

    Article  ADS  Google Scholar 

  8. N. Hashimoto, R. Goto, H. Yano, K. Obara, O. Ishikawa, T. Hata, Phys. Rev. B 76, 020504 (2007)

    Article  ADS  Google Scholar 

  9. R. Goto, S. Fujiyama, H. Yano, Y. Nago, N. Hashimoto, K. Obara, O. Ishikawa, M. Tsubota, T. Hata, Phys. Rev. Lett. 100, 045301 (2008)

    Article  ADS  Google Scholar 

  10. W. Schoepe, Phys. Rev. Lett. 92, 095301 (2004)

    Article  ADS  Google Scholar 

  11. H. Yano, Y. Nago, R. Goto, K. Obara, O. Ishikawa, T. Hata, J. Phys.: Conf. Series 150, 032126 (2009)

    Article  ADS  Google Scholar 

  12. H. Yano, N. Hashimoto, R. Goto, K. Obara, O. Ishikawa, T. Hata, J. Low Temp. Phys. 150, 410 (2008)

    Article  ADS  Google Scholar 

  13. N. Hashimoto, A. Handa, M. Nakagawa, K. Obara, H. Yano, O. Ishikawa, T. Hata, J. Low Temp. Phys. 148, 299 (2007)

    Article  ADS  Google Scholar 

  14. H.A. Nichol, L. Skrbek, P.C. Hendry, P.V.E. McClintock, Phys. Rev. Lett. 92, 244501 (2004)

    Article  ADS  Google Scholar 

  15. M. Morishita, T. Kuroda, A. Sawada, T. Satoh, J. Low Temp. Phys. 76, 387 (1989)

    Article  ADS  Google Scholar 

  16. H. Yano, N. Hashimoto, A. Handa, M. Nakagawa, K. Obara, O. Ishikawa, T. Hata, Phys. Rev. B 75, 012502 (2007)

    Article  ADS  Google Scholar 

  17. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002)

    Article  Google Scholar 

  18. D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, K.L. Zaki, J. Low Temp. Phys. 138, 493 (2005)

    Article  ADS  Google Scholar 

  19. D.I. Bradley, S.N. Fisher, A.M. Guénault, R.P. Haley, V. Tsepelin, G.R. Pickett, K.L. Zaki, J. Low Temp. Phys. 154, 97 (2009)

    Article  ADS  Google Scholar 

  20. S.N. Fisher, A.J. Hale, A.M. Guénault, G.R. Pickett, Phys. Rev. Lett. 86, 244 (2001)

    Article  ADS  Google Scholar 

  21. D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett. 95, 035302 (2005)

    Article  ADS  Google Scholar 

  22. S. Fujiyama, M. Tsubota, Phys. Rev. B 79, 094513 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yano, H., Ogawa, T., Mori, A. et al. Transition to Quantum Turbulence Generated by Thin Vibrating Wires in Superfluid 4He. J Low Temp Phys 156, 132–144 (2009). https://doi.org/10.1007/s10909-009-9888-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-9888-9

Keywords

PACS

Navigation