Skip to main content
Log in

Quantum Phases of Excitons and Their Detections in Electron-Hole Semiconductor Bilayer Systems

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

There have been extensive experimental search for possible exciton superfluid in semiconductor electron-hole bilayer (EHBL) systems below liquid Helium temperature. Here we construct a quantum Ginsburg-Landau theory to study the quantum phases and transitions in EHBL. We propose that in the dilute limit as distance is increased, there is a first order transition from the excitonic superfluid (ESF) to the excitonic supersolid (ESS) driven by the collapsing of a roton minimum, then a 2nd order transition from the ESS to excitonic normal solid. We show the latter transition is in the same universality class of superfluid to Mott transition in a rigid lattice. We then study novel elementary low energy excitations inside the ESS. We find that there are two “supersolidon” longitudinal modes (one upper branch and one lower branch) inside the ESS, while the transverse mode in the ESS stays the same as that inside a exciton normal solid (ENS). We also work out various experimental signatures of these novel elementary excitations by evaluating the Debye-Waller factor, density-density correlation, specific heat and vortex-vertex interactions. For the meta-stable supersolid generated by photon pumping, we show that several unique features of the photoluminescent can be used to detect the metastable ESS state generated by photon pumping without any ambiguity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Blatt, K.W. Böer, W. Brandt, Phys. Rev. 126, 1691 (1962)

    Article  ADS  Google Scholar 

  2. L.V. Keldysh, A.N. Kozlov, Sov. Phys. JETP 27, 521–528 (1968)

    ADS  Google Scholar 

  3. C. Comte, P. Nozieres, J. Phys. (Paris) 43, 1069 (1982)

    Google Scholar 

  4. Yu.E. Lozovik, V.I. Yudson, Pis’ma Zh. Eksp. Teor. Fiz. 22, 556 (1975) [JETP Lett. 22, 274 (1975)]

    Google Scholar 

  5. S.I. Shevchenko, Phys. Rev. Lett. 72, 3242–3245 (1994)

    Article  ADS  Google Scholar 

  6. L.V. Butov et al., Nature 417, 47–52 (2002)

    Article  ADS  Google Scholar 

  7. L.V. Butov et al., Nature 418, 751–754 (2002)

    Article  ADS  Google Scholar 

  8. C.W. Lai et al., Science 303, 503–506 (2004)

    Article  ADS  Google Scholar 

  9. D. Snoke et al., Nature 418, 754–757 (2002)

    Article  ADS  Google Scholar 

  10. D. Snoke, Nature 443, 403–404 (2006)

    Article  ADS  Google Scholar 

  11. R. Rapaport, G. Chen, D. Snoke, S.H. Simon, L. Pfeiffer, K. West, Y. Liu, S. Denev, Phys. Rev. Lett. 92, 117405 (2004)

    Article  ADS  Google Scholar 

  12. G. Chen, R. Rapaport, L.N. Pffeifer, K. West, P.M. Platzman, S. Simon, Z. Voros, D. Snoke, Phys. Rev. B 74, 045309 (2006)

    Article  ADS  Google Scholar 

  13. U. Sivan, P.M. Solomon, H. Shtrikman, Phys. Rev. Lett. 68, 1196–1199 (1992)

    Article  ADS  Google Scholar 

  14. J.A. Seamons, D.R. Tibbetts, J.L. Reno, M.P. Lilly, Appl. Phys. Lett. 90, 052103 (2007)

    Article  ADS  Google Scholar 

  15. J.A. Seamons, C.P. Morath, J.L. Reno, M.P. Lilly, Phys. Rev. Lett. 102, 026804 (2009)

    Article  ADS  Google Scholar 

  16. C.P. Morath, J.A. Seamons, J.L. Reno, M.P. Lilly, Phys. Rev. B 79, 041305 (2009)

    Article  ADS  Google Scholar 

  17. C.P. Morath, J.A. Seamons, J.L. Reno, M.P. Lilly, Phys. Rev. B 78, 115318 (2008)

    Article  ADS  Google Scholar 

  18. C.P. Morath, J.A. Seamons, J.L. Reno, M.P. Lilly, unpublished

  19. A.F. Croxall, K. Das Gupta, C.A. Nicoll, M. Thangaraj, H.E. Beere, I. Farrer, D.A. Ritchie, M. Pepper, Phys. Rev. Lett. 101, 246801 (2008)

    Article  ADS  Google Scholar 

  20. A.F. Croxall, K. Das Gupta, C.A. Nicoll, H.E. Beere, I. Farrer, D.A. Ritchie, M. Pepper, Phys. Rev. B 80, 125323 (2009)

    Article  Google Scholar 

  21. S. De Palo, F. Rapisarda, G. Senatore, Phys. Rev. Lett. 88, 206401 (2002)

    Article  ADS  Google Scholar 

  22. S. De Palo, S. Conti, S. Moroni, Phys. Rev. B 69, 035109 (2004)

    Article  ADS  Google Scholar 

  23. B. Tanatar, D.M. Ceperley, Phys. Rev. B 39, 5005 (1989)

    Article  ADS  Google Scholar 

  24. Y.N. Joglekar, A.V. Balatsky, S. Das Sarma, Phys. Rev. B 74, 233302 (2006)

    Article  ADS  Google Scholar 

  25. M. Combescot, O. Betbeder-Matibet, R. Combescot, arXiv:0706.2419

  26. M. Combescot, M.N. Leuenberger, On the dark nature of exciton Bose-Einstein condensate. arXiv:0807.4724

  27. J. Ye, L. Jiang, Phys. Rev. Lett. 98, 236802 (2007)

    Article  ADS  Google Scholar 

  28. J. Ye, Phys. Rev. Lett. 97, 236803 (2006)

    Article  ADS  Google Scholar 

  29. J. Ye, Ann. Phys. 323, 580–630 (2008)

    Article  MATH  ADS  Google Scholar 

  30. A. Andreev, I. Lifshitz, Sov. Phys. JETP 29, 1107 (1969)

    ADS  Google Scholar 

  31. G.V. Chester, Phys. Rev. A 2, 256 (1970)

    Article  ADS  Google Scholar 

  32. E. Kim, M.H.W. Chan, Science 305, 1941–1944

  33. J. Ye. cond-mat/0603269

  34. J. Ye, T. Shi, L. Jiang, Phys. Rev. Lett. 103, 177401 (2009)

    Article  Google Scholar 

  35. T. Shi, J. Ye, L. Jiang, C.P. Sun, submitted to Phys. Rev. Lett. arXiv:0904.1429

  36. J. Ye, T. Shi, L. Jiang, C.P. Sun, to be submitted to Phys. Rev. B. arXiv:0802.1065. v4

  37. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  38. L. Jiang, J. Ye, Phys. Rev. B 76, 184104 (2007)

    Article  ADS  Google Scholar 

  39. J. Ye, Europhys. Lett. 82, 16001 (2008)

    Article  Google Scholar 

  40. A. Chubukov, S. Sachdev, J. Ye, Phys. Rev. B 119, 19 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwu Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J. Quantum Phases of Excitons and Their Detections in Electron-Hole Semiconductor Bilayer Systems. J Low Temp Phys 158, 882–900 (2010). https://doi.org/10.1007/s10909-009-0056-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-0056-z

Navigation