Skip to main content
Log in

Zero and First Sound in Normal Fermi Systems

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

On the basis of a moment method, general solutions of a linearized Boltzmann equation for a normal Fermi system are investigated. In particular, we study the sound velocities and damping rates as functions of the temperature and the coupling constant. In the extreme limits of collisionless and hydrodynamic regimes, eigenfrequency of sound mode obtained from the moment equations reproduces the well-known results of zero sound and first sound. In addition, the moment method can describe crossover between those extreme limits at finite temperatures. Solutions of the moment equations also involve a thermal diffusion mode. From solutions of these equations, we discuss excitation spectra corresponding to the particle-hole continuum as well as collective excitations. We also discuss a collective mode in a weak coupling case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Landau, J. Exp. Theor. Phys. (USSR) 30, 1058 (1956)

    Google Scholar 

  2. L.D. Landau, Sov. Phys. JETP 3, 920 (1957)

    MATH  Google Scholar 

  3. L.D. Landau, Sov. Phys. JETP 5, 101 (1957)

    MATH  Google Scholar 

  4. I.M. Khalatnikov, A.A. Abrikosov, Sov. Phys. JETP 6, 84 (1958)

    MathSciNet  ADS  Google Scholar 

  5. W.R. Abel, A.C. Anderson, J.C. Wheatley, Phys. Rev. Lett. 17, 74 (1966)

    Article  ADS  Google Scholar 

  6. D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990)

    Google Scholar 

  7. W.P. Halperin, L.P. Pitaevskii, Helium Three. Modern Problems in Condensed Matter Sciences (North-Holland, Amsterdam, 1990)

    Google Scholar 

  8. E.R. Dobbs, Helium Three (Oxford University Press, Oxford, 2000)

    Google Scholar 

  9. D. Pines, P. Nozieres, The Theory of Quantum Liquids, Volume I: Normal Fermi Liquids (Westview Press, 1994)

  10. G. Baym, C. Pethick, Landau Fermi-Liquid Theory: Concepts and Applications (Wiley, New York, 1991)

    Book  Google Scholar 

  11. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  12. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  13. S.D. Gensemer, D.S. Jin, Phys. Rev. Lett. 87, 173201 (2001)

    Article  ADS  Google Scholar 

  14. B. DeMarco, D.S. Jin, Phys. Rev. Lett. 88, 040405 (2002)

    Article  ADS  Google Scholar 

  15. J. Kinast, S.L. Hemmer, M.E. Gehm, A. Turlapov, J.E. Thomas, Phys. Rev. Lett. 92, 150402 (2004)

    Article  ADS  Google Scholar 

  16. M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, R. Grimm, Phys. Rev. Lett. 92, 203201 (2004)

    Article  ADS  Google Scholar 

  17. M.J. Wright, S. Riedl, A. Altmeyer, C. Kohstall, E.R. Sánchez Guajardo, J. Hecker Denschlag, R. Grimm, Phys. Rev. Lett. 99, 150403 (2007)

    Article  ADS  Google Scholar 

  18. J. Joseph, B. Clancy, L. Luo, J. Knast, A. Turlapov, J.E. Thomas, Phys. Rev. Lett. 98, 170401 (2007)

    Article  ADS  Google Scholar 

  19. L. Vichi, S. Stringari, Phys. Rev. A 60, 4734 (1999)

    Article  ADS  Google Scholar 

  20. L. Vichi, J. Low Temp. Phys. 121, 177 (2000)

    Article  Google Scholar 

  21. S.-K. Yip, T.-L. Ho, Phys. Rev. A 59, 4653 (1999)

    Article  ADS  Google Scholar 

  22. G.M. Bruun, C.W. Clark, Phys. Rev. Lett. 83, 5415 (1999)

    Article  ADS  Google Scholar 

  23. G.M. Bruun, Phys. Rev. A 63, 043408 (2001)

    Article  ADS  Google Scholar 

  24. G.M. Bruun, H. Smith, Phys. Rev. A 72, 043605 (2005)

    Article  ADS  Google Scholar 

  25. F. Toschi, P. Vignolo, S. Succi, M.P. Tosi, Phys. Rev. Lett. 67, 041605 (2003)

    ADS  Google Scholar 

  26. F. Toschi, P. Capuzzi, S. Succi, P. Vignolo, M.P. Tosi, J. Phys. B: At. Mol. Phys. 37, S91–S99 (2004)

    Article  ADS  Google Scholar 

  27. Z. Akdeniz, P. Vignolo, M.P. Tosi, Phys. Lett. A 311, 246 (2003)

    Article  ADS  Google Scholar 

  28. P. Capuzzi, P. Vignolo, F. Federici, M.P. Tosi, J. Phys. B: At. Mol. Opt. Phys. 39, S25–S35 (2006)

    Article  ADS  Google Scholar 

  29. E. Taylor, H. Hu, X.-J. Liu, L.P. Pitaevskii, A. Griffin, S. Stringari, arXiv:0905.0257

  30. E. Taylor, H. Hu, X.-J. Liu, A. Griffin, Phys. Rev. A 77, 033608 (2008)

    Article  ADS  Google Scholar 

  31. P. Massignan, G.M. Bruun, H. Smith, Phys. Rev. A 71, 033607 (2005)

    Article  ADS  Google Scholar 

  32. G.M. Bruun, H. Smith, Phys. Rev. A 76, 045602 (2007)

    Article  ADS  Google Scholar 

  33. G.A. Brooker, J. Sykes, Ann. Phys. 61, 387 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Guéry-Odelin, F. Zambelli, J. Dalibard, S. Stringari, Phys. Rev. A 60, 4851 (1999)

    Article  ADS  Google Scholar 

  35. U. Al Khawaja, C.J. Pethick, H. Smith, J. Low Temp. Phys. 118, 127 (2000)

    Article  Google Scholar 

  36. D. Guéry-Odelin, S. Stringari, Phys. Rev. Lett. 83, 4452 (1999)

    Article  ADS  Google Scholar 

  37. T. Nikuni, Phys. Rev. A 65, 033611 (2002)

    Article  ADS  Google Scholar 

  38. T. Nikuni, J.E. Williams, C.W. Clark, Phys. Rev. A 66, 043411 (2002)

    Article  ADS  Google Scholar 

  39. Y. Endo, T. Nikuni, J. Low Temp. Phys. 152, 21 (2008)

    Article  ADS  Google Scholar 

  40. J.M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1960)

    MATH  Google Scholar 

  41. A.B. Larionov, M. Cabibbo, V. Baran, M. Di Toro, Nucl. Phys. A 648, 157 (1999)

    Article  ADS  Google Scholar 

  42. J.W. Negele, H. Orland, Quantum Many-Particle Systems (Westview Press, 1988)

  43. S. Watabe, T. Nikuni, Unpublished

  44. G.M. Bruun, H. Smith, Phys. Rev. Lett. 92, 140404 (2004)

    Article  ADS  Google Scholar 

  45. A.A. Abrikosov, I.M. Khalatnikov, Zh. Eks. Teor. Fiz. 32, 1083 (1957). English transl. Sov. Phys. JETP 5, 887 (1957)

    Google Scholar 

  46. D. Hone, Phys. Rev. 121, 669 (1961)

    Article  ADS  Google Scholar 

  47. K.S. Dy, C.J. Pethick, Phys. Rev. Lett. 21, 876 (1968)

    Article  ADS  Google Scholar 

  48. K.S. Dy, C.J. Pethick, Phys. Rev. 185, 373 (1969)

    Article  ADS  Google Scholar 

  49. J. Sykes, G.A. Brooker, Ann. Phys. 56, 1 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  50. E.A. Uehling, G.E. Uhlenbeck, Phys. Rev. 43, 552 (1933)

    Article  MATH  ADS  Google Scholar 

  51. E.A. Uehling, Phys. Rev. 46, 914 (1934)

    Article  ADS  Google Scholar 

  52. T. Nikuni, A. Griffin, J. Low Temp. Phys. 111, 793 (1998)

    Article  Google Scholar 

  53. J.E. Williams, N. Nygaard, C.W. Clark, New J. Phys. 6, 123 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohei Watabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watabe, S., Osawa, A. & Nikuni, T. Zero and First Sound in Normal Fermi Systems. J Low Temp Phys 158, 773–805 (2010). https://doi.org/10.1007/s10909-009-0043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-0043-4

PACS

Navigation