Skip to main content
Log in

3He Vapor Pressure near Its Critical Point

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Between 0.65 K and 3.2 K, the temperature dependence of the vapor pressure P of 3He is defined by the International Temperature Scale of 1990 (ITS-90). However, the ITS-90 vapor pressure equation was not designed to be consistent with the scaling law required for the second temperature derivative of the vapor pressure in the vicinity of the liquid-vapor critical point. In this paper, two scaling-type equations are used to describe the 3He vapor pressure in the region near the critical point. The first scaling equation contains two unknown coefficients which are obtained by taking as reference the temperature \(\bar{T}\) at which the product (T c T)P presents a maximum ( \(\bar{T}=2.56736\)  K). The second scaling equation contains three unknown coefficients which are obtained by using as references \(\bar{T}\) and T up=3.2 K, the upper value of the ITS-90 interval. In both equations we take for the critical temperature and pressure the values T c =3.31554 K and P c =114 632.7 Pa. The proposed equations, specially the second one, are satisfactorily compared with experimental data for P and dP/dT within the temperature range (T c T)/T c ≤0.065 and with semiempirical data for d 2 P/dT 2 within the temperature range 0.0001≤(T c T)/T c ≤0.03.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Preston-Thomas, Metrologia 27, 3–10 (1990)

    Article  ADS  Google Scholar 

  2. H. Preston-Thomas, Metrologia 27, 107 (1990)

    Article  ADS  Google Scholar 

  3. M.L. McGlashan, J. Chem. Thermodyn. 22, 653–663 (1990)

    Article  Google Scholar 

  4. R.P. Behringer, T. Doiron, H. Meyer, Technical Report, Duke University, August 1975 (unpublished)

  5. M.A. Anisimov, F. Zhong, M. Barmatz, J. Low Temp. Phys. 137, 69–88 (2004)

    Article  ADS  Google Scholar 

  6. F. Zhong, M. Barmatz, Phys. Rev. E 70, 066105-1-9 (2004)

    Article  ADS  Google Scholar 

  7. Y.H. Huang, G.B. Chen, Cryogenics 46, 833–839 (2006)

    Article  ADS  Google Scholar 

  8. R.P. Behringer, T. Doiron, H. Meyer, J. Low Temp. Phys. 24, 315–344 (1976)

    Article  ADS  Google Scholar 

  9. B. Wallace Jr., H. Meyer, Phys. Rev. A 2, 1563–1575 (1970)

    Article  ADS  Google Scholar 

  10. I. Hahn, M. Weilert, F. Zhong, M. Barmatz, J. Low Temp. Phys. 137, 579–598 (2004)

    Article  ADS  Google Scholar 

  11. F. Zhong, M. Barmatz, I. Hahn, Phys. Rev. E 67, 021106-1-20 (2003)

    ADS  Google Scholar 

  12. M. Barmatz, I. Hahn, F. Zhong, M.A. Anisimov, V.A. Agayan, J. Low Temp. Phys. 121, 633–642 (2000)

    Article  Google Scholar 

  13. C.E. Chase, G.O. Zimmerman, J. Low Temp. Phys. 11, 551–579 (1973)

    Article  ADS  Google Scholar 

  14. S. Velasco, F.L. Román, J.A. White, A. Mulero, Appl. Phys. Lett. 90, 141905-1-3 (2007)

    Article  ADS  Google Scholar 

  15. K. Srinivasan, Z. Phys. Chem. 216, 1379–1387 (2002)

    Google Scholar 

  16. R. Guida, J. Zinn-Justin, J. Phys. A 31, 8103–8121 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. M.E. Fisher, G. Orkoulas, Phys. Rev. Lett. 85, 696–699 (2000)

    Article  ADS  Google Scholar 

  18. G.R. Brown, H. Meyer, Phys. Rev. A 6, 364–377 (1972)

    Article  ADS  Google Scholar 

  19. M.S. Green, M.J. Cooper, J.M.H. Levelt-Sengers, Phys. Rev. Lett. 26, 492–495 (1971)

    Article  ADS  Google Scholar 

  20. F.J. Wegner, Phys. Rev. B 5, 4529–4536 (1972)

    Article  ADS  Google Scholar 

  21. J.J. Rehr, N.D. Mermin, Phys. Rev. A 8, 472–480 (1973)

    Article  ADS  Google Scholar 

  22. M.R. Moldover, J. Res. Natl. Bur. Stand. 83, 329–333 (1978)

    MATH  Google Scholar 

  23. Y.C. Kim, M.E. Fisher, G. Orkoulas, Phys. Rev. E 67, 061506-1-21 (2002)

    ADS  Google Scholar 

  24. J.R. Hastings, J.M.H. Levelt-Sengers, in Proceedings of the Seventh Symposium on Thermophysical Properties (Am. Soc. Mech. Eng., New York, 1977), pp. 794–806

    Google Scholar 

  25. A.I. Abdulagatov, G.V. Stepanov, I.M. Abdulagatov, Fluid Phase Equilib. 209, 55–79 (2003)

    Article  Google Scholar 

  26. R.L. Rusby, J. Chem. Thermodynamics 23, 1153–1161 (1991)

    Article  Google Scholar 

  27. Bureau International des Poids et Mesures, Metrologia 15, 65–68 (1979)

    Article  Google Scholar 

  28. R.L. Rusby, C.A. Swenson, Metrologia 16, 73–87 (1980)

    Article  ADS  Google Scholar 

  29. M. Durieux, R.L. Rusby, Metrologia 19, 67–72 (1983)

    Article  ADS  Google Scholar 

  30. C.N. Yang, C.P. Yang, Phys. Rev. Lett. 13, 303–305 (1964)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Velasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco, S., Román, F.L. & White, J.A. 3He Vapor Pressure near Its Critical Point. J Low Temp Phys 152, 177–185 (2008). https://doi.org/10.1007/s10909-008-9814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-008-9814-6

Keywords

Navigation