Journal of Low Temperature Physics

, Volume 151, Issue 3–4, pp 1061–1066 | Cite as

The EBIT Calorimeter Spectrometer: A New, Permanent User Facility at the LLNL EBIT

  • F. S. Porter
  • P. Beiersdorfer
  • G. V. Brown
  • W. Doriese
  • J. Gygax
  • R. L. Kelley
  • C. A. Kilbourne
  • J. King
  • K. Irwin
  • C. Reintsema
  • J. Ullom
Article

Abstract

The EBIT Calorimeter Spectrometer (ECS) is currently being completed and will be installed at the EBIT facility at the Lawrence Livermore National Laboratory in October 2007. The ECS will replace the smaller XRS/EBIT microcalorimeter spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory program. The new ECS spectrometer was built to be a low maintenance, high performance implanted silicon microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 μs event timing, and capable of uninterrupted acquisition sessions of over 60 hours at 50 mK. The XRS/EBIT program has been very successful, producing many results on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES instrument.

Keywords

X-ray Detector Cryogenic Astrophysics 

PACS

52.25.Os 52.70.La 95.85.Nv 32.30.Rj 07.85.Fv 78.70.En 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Levine et al., Phys. Scr. T22, 1576 (1988) CrossRefGoogle Scholar
  2. 2.
    F.S. Porter et al., Rev. Sci. Instrum. 75, 3772 (2004) CrossRefADSGoogle Scholar
  3. 3.
    H. Chen et al., Astrophys. J. 646, 653 (2006) CrossRefADSGoogle Scholar
  4. 4.
    G.V. Brown et al., Phys. Rev. Lett. 96, 253201 (2006) CrossRefADSGoogle Scholar
  5. 5.
    P. Beiersdorfer et al., Science 300, 1558 (2003) CrossRefADSGoogle Scholar
  6. 6.
    C.K. Stahle et al., Nucl. Instrum. Methods A 520, 466 (2004) CrossRefADSGoogle Scholar
  7. 7.
    F.S. Porter et al., Proc. SPIE 3765, 729 (1999) CrossRefADSGoogle Scholar
  8. 8.
    F.S. Porter et al., Nucl. Instrum. Methods A 559, 436 (2006) CrossRefADSGoogle Scholar
  9. 9.
    F. S Porter et al., Can. J. Phys. (2008 accepted) Google Scholar

Copyright information

© U.S. Government 2008

Authors and Affiliations

  • F. S. Porter
    • 1
  • P. Beiersdorfer
    • 2
  • G. V. Brown
    • 2
  • W. Doriese
    • 3
  • J. Gygax
    • 1
  • R. L. Kelley
    • 1
  • C. A. Kilbourne
    • 1
  • J. King
    • 1
  • K. Irwin
    • 3
  • C. Reintsema
    • 3
  • J. Ullom
    • 3
  1. 1.NASA’s Goddard Space Flight CenterGreenbeltUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA
  3. 3.National Institute for Standards and TechnologyBoulderUSA

Personalised recommendations