Journal of Low Temperature Physics

, Volume 151, Issue 3–4, pp 597–602 | Cite as

The MARE Project

Article

Abstract

The international project “Microcalorimeter Arrays for a Rhenium Experiment” (MARE) aims at a direct and calorimetric measurement of the electron antineutrino mass with sub-electronvolt sensitivity.

MARE is divided in two phases. The first phase consists of two independent experiments using the presently available detector technology to reach a sensitivity of the order of 1 eV and to improve the understanding of the systematic uncertainties peculiar of this technique. In parallel to these experiments, a wide R&D program will single out the appropriate detector configuration, the read-out scheme and the large array technology for the second phase of MARE. In the second phase, the selected techniques will be applied to the realization of large arrays with as many as 10000 detectors each. At least five arrays will be then deployed to collect the statistics required to probe the antineutrino mass with a sensitivity of at least 0.2 eV, comparable to the one expected for the Katrin experiment (KATRIN Design Report, [2004]).

Keywords

Neutrino mass Beta decay Thermal detectors 187Re 

PACS

23.40.Bw 14.60.Pq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ch. Kraus et al., Eur. Phys. J. C 40, 447 (2005) CrossRefADSGoogle Scholar
  2. 2.
    KATRIN Design Report (2004), FZKA7090; KATRIN LoI (2001), hep-ex/0109033 Google Scholar
  3. 3.
    H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586, 198 (2004) CrossRefADSGoogle Scholar
  4. 4.
    G.L. Fogli et al., arXiv:hep-ph/0608060 (2006) Google Scholar
  5. 5.
    J.J. Simpson, Phys. Rev. D 23, 649 (1981) CrossRefADSGoogle Scholar
  6. 6.
    M. Galeazzi et al., Phys. Rev. C 63, 014302 (2001) CrossRefADSGoogle Scholar
  7. 7.
    F. Gatti, Nucl. Phys. B 91, 293 (2001) CrossRefGoogle Scholar
  8. 8.
    C. Arnaboldi et al., Phys. Rev. Lett. 91, 161802 (2003) CrossRefADSGoogle Scholar
  9. 9.
    M. Sisti et al., Nucl. Instrum. Methods A 520, 125 (2004) CrossRefADSGoogle Scholar
  10. 10.
    F. Gatti et al., Nature 397, 137 (1999) CrossRefADSGoogle Scholar
  11. 11.
    C. Arnaboldi et al., Phys. Rev. Lett. 96, 042503 (2006) CrossRefADSGoogle Scholar
  12. 12.
    The MARE proposal, http://mare.dfm.uninsubria.it
  13. 13.
    A. Monfardini et al., Nucl. Instrum. Methods A 559, 364 (2006) CrossRefADSGoogle Scholar
  14. 14.
    F. Fontanelli, Nucl. Instrum. Methods A 431, 464 (1999) CrossRefADSGoogle Scholar
  15. 15.
    L. Foggetta et al., J. Low Temp. Phys. (2008) doi:10.1007/s10909-008-9714-9 Google Scholar
  16. 16.
    A. Nucciotti et al., Nucl. Instrum. Methods A 520, 148 (2004) CrossRefADSGoogle Scholar
  17. 17.
    A. Monfardini et al., Nucl. Instrum. Methods A 559, 346 (2006) CrossRefADSGoogle Scholar
  18. 18.
    D. Pergolesi et al., Nucl. Instrum. Methods A 559, 349 (2006) CrossRefADSGoogle Scholar
  19. 19.
    F. Gatti et al., J. Low Temp. Phys. (2008) doi:10.1007/s10909-008-9716-7 Google Scholar
  20. 20.
    R. Vaccarone et al., J. Low Temp. Phys. (2008) doi:10.1007/s10909-008-9768-8 Google Scholar
  21. 21.
    L. Parodi et al., J. Low Temp. Phys. (2008) doi:10.1007/s10909-008-9783-9 Google Scholar
  22. 22.
    A. Nucciotti et al., Nucl. Instrum. Methods A 520, 367 (2004) CrossRefGoogle Scholar
  23. 23.
    S. Kraft-Bermuth et al., J. Low Temp. Phys. (2008) doi:10.1007/s10909-008-9715-8 Google Scholar
  24. 24.
    D. Schaeffer et al., J. Low Temp. Phys. (2008) doi:10.1007/s10909-008-9719-4 Google Scholar
  25. 25.
    M.D. Audley et al., Nucl. Instrum. Methods A 520, 483 (2004) CrossRefADSGoogle Scholar
  26. 26.
    J.-P. Porst et al., J. Low Temp. Phys. (2008) doi:10.1007/s10909-007-9665-6 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Dip. di Fisica “G. Occhialini”Univ. di Milano-Bicocca and INFN Sez. di Milano-BicoccaMilanItaly

Personalised recommendations