Skip to main content
Log in

Flow and Supersolidity in Helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent torsional oscillator measurements showed evidence of non-classical rotational inertia in solid helium at temperatures below 200 mK and generated a great deal of interest in a possible supersolid state. The nature and properties of such a state are still unclear, although experiments involving 3He impurities and crystal annealing may provide clues. It would be very interesting to know whether supersolids share any of the other unusual properties of superfluids: superleaks, persistent currents, second sound and quantized vortices. We have studied the response of solid helium to pressure differences, in order to look for unusual flow properties that might be associated with supersolidity. Our measurements involved both helium confined in the nanometer pores of Vycor glass and bulk solid helium, at temperatures as low as 30 mK. Near melting, solid helium flows very easily but we did not see any evidence of superflow at low temperatures. If helium does become a supersolid at low temperatures, then its response to pressure gradients must be very different from that of liquid helium. We describe these and other experiments and discuss the role that defects may play in the low temperature behavior of solid helium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Andreev, I.M. Lifshitz, Sov. Phys. J. Exp. Theor. Phys. 29, 1107 (1969)

    Google Scholar 

  2. A.J. Leggett, Phys. Rev. Lett. 22, 1543 (1970)

    Article  ADS  Google Scholar 

  3. J.M. Goodkind, Phys. Rev. Lett. 89, 095301 (2002)

    Article  ADS  Google Scholar 

  4. E. Kim, M.H.W. Chan, Nature 427, 225 (2004)

    Article  ADS  Google Scholar 

  5. E. Kim, M.H.W. Chan, Science 305, 1941 (2004)

    Article  ADS  Google Scholar 

  6. E. Kim, M.H.W. Chan, Phys. Rev. Lett. 97, 115302 (2006)

    Article  ADS  Google Scholar 

  7. E. Kim, M.H.W. Chan, Bull. Am. Phys. Soc., G41.00008 (2006)

  8. D.J. Bishop, M.A. Paalanen, J.D. Reppy, Phys. Rev. Lett. 24, 2844 (1981)

    ADS  Google Scholar 

  9. A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 98, 175302 (2007)

    Article  ADS  Google Scholar 

  10. K. Shirahama, private communication

  11. M. Kubota, private communication

  12. N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 94, 155302 (2005)

    Article  ADS  Google Scholar 

  13. D.M. Ceperley, B. Bernu, Phys. Rev. Lett. 93, 155303 (2004)

    Article  ADS  Google Scholar 

  14. D.S. Greywall, Phys. Rev. B 16, 1291 (1977)

    Article  ADS  Google Scholar 

  15. G. Bonfait, H. Godfrin, B. Castaing, J. Phys. 50, 1997 (1989)

    Google Scholar 

  16. J. Day, T. Herman, J. Beamish, Phys. Rev. Lett. 95, 035301 (2005)

    Article  ADS  Google Scholar 

  17. J. Day, J. Beamish, Phys. Rev. Lett. 96, 105304 (2006)

    Article  ADS  Google Scholar 

  18. I. Iwasa, H. Suzuki, J. Phys. Soc. Jpn. 49, 1722 (1980)

    Article  ADS  Google Scholar 

  19. I. Iwasa, K. Araki, H. Suzuki, J. Phys. Soc. Jpn. 46, 1119 (1979)

    Article  ADS  Google Scholar 

  20. T. Kobayashi, S. Fukazawa, J. Taniguchi, M. Suzuki, K. Shirahama, AIP Conf. Proc. 850, 333 (2006)

    Article  ADS  Google Scholar 

  21. J.R. Beamish, N. Mulders, A. Hikata, C. Elbaum, Phys. Rev. B 44, 9314 (1991)

    Article  ADS  Google Scholar 

  22. J. Day, J. Beamish, J. Low Temp. Phys. (this volume)

  23. B.A. Fraass, S.M. Heald, R.O. Simmons, J. Cryst. Growth 42, 370 (1977)

    Article  Google Scholar 

  24. D.S. Greywall, Phys. Rev. A 3, 2106 (1971)

    Article  ADS  Google Scholar 

  25. J.R. Beamish, J.P. Franck, Phys. Rev. B 26, 6104 (1982)

    Article  ADS  Google Scholar 

  26. M.H.W. Chan, private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Beamish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, J., Beamish, J. Flow and Supersolidity in Helium. J Low Temp Phys 148, 627–634 (2007). https://doi.org/10.1007/s10909-007-9481-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9481-z

PACS

Navigation