Skip to main content

Temperature Dependence of the Upper Critical Field in bcc Solid 3He


The temperature dependence of the upper critical field for the antiferromagnetic high-field phase of bcc solid 3He has been calculated by Iwahashi and Masuda utilizing the Green-function method with Tyablikov decoupling. In the low temperature limit the upper critical field, H c2(T), is found to decrease from H c2(0) with increasing temperature as a power law with exponent 3/2. Interestingly, the same power law dependence has been predicted for a system of dilute magnons undergoing Bose–Einstein condensation and has been observed in the spin-gap antiferromagnets TlCuCl3, BaCuSi2O6, and NiCl2–4SC(NH2)2. An experiment has been attempted to determine precisely the temperature dependence of the upper critical field in bcc solid 3He by measuring the pressure of the solid during adiabatic demagnetization through the critical field. The theoretical framework motivating the experimental study is presented along with details of the experimental setup.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. Roger, J.H. Hetherington, J.M. Delrieu, Rev. Mod. Phys. 55, 1 (1983)

    Article  ADS  Google Scholar 

  2. 2.

    D.D. Osheroff, M.C. Cross, D.S. Fisher, Phys. Rev. Lett. 44, 792 (1980)

    Article  ADS  Google Scholar 

  3. 3.

    A. Benoit, J. Bossy, J. Flouquet, J. Schweitzer, J. Phys. Lett. (Paris) 46, L-923 (1985)

    Google Scholar 

  4. 4.

    D.S. Greywall, F.A. Busch, Phys. Rev. B 36, 6835 (1987)

    Article  ADS  Google Scholar 

  5. 5.

    Y.H. Tang, E.D. Adams, K. Uhlig, Phys. Rev. Lett. 57, 222 (1986)

    Article  ADS  Google Scholar 

  6. 6.

    N.F. Omelaenko, E.D. Adams, Y. Takano, J. Low Temp. Phys. 134, 187 (2004)

    Article  Google Scholar 

  7. 7.

    J.S. Xia, W. Ni, E.D. Adams, Phys. Rev. Lett. 70, 1481 (1993)

    Article  ADS  Google Scholar 

  8. 8.

    H. Fukuyama, T. Fukuda, T. Okamoto, H. Akimoto, H. Ishimoto, S. Ogawa, Phys. B 169, 197 (1991)

    Article  ADS  Google Scholar 

  9. 9.

    K. Iwahashi, Y. Masuda, J. Phys. Soc. Jpn. 59, 1305 (1989)

    Article  ADS  Google Scholar 

  10. 10.

    H. Godfrin, D.D. Osheroff, Phys. Rev. B 38, 4492 (1988)

    Article  ADS  Google Scholar 

  11. 11.

    I. Affleck, Phys. Rev. B 43, 3215 (1991)

    Article  ADS  Google Scholar 

  12. 12.

    T. Giamarchi, A.M. Tsvelik, Phys. Rev. B 59, 11398 (1999)

    Article  ADS  Google Scholar 

  13. 13.

    T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Phys. Rev. Lett. 84, 5868 (2000)

    Article  ADS  Google Scholar 

  14. 14.

    M. Jaime et al., Phys. Rev. Lett. 93, 087203 (2004)

    Article  ADS  Google Scholar 

  15. 15.

    V.S. Zapf et al., Phys. Rev. Lett. 96, 077204 (2006)

    Article  ADS  Google Scholar 

  16. 16.

    T. Lang, P.L. Moyland, D.A. Sergatskov, E.D. Adams, Y. Takano, Phys. Rev. Lett. 77, 322 (1996)

    Article  ADS  Google Scholar 

  17. 17.

    J. Xu et al., J. Low Temp. Phys. 89, 719 (1992)

    Article  Google Scholar 

  18. 18.

    E.D. Adams, Rev. Sci. Instrum. 64, 601 (1993)

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Todd E. Sherline.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sherline, T.E., Adams, E.D. & Takano, Y. Temperature Dependence of the Upper Critical Field in bcc Solid 3He. J Low Temp Phys 148, 743–747 (2007).

Download citation


  • 03.75.Nt
  • 67.80.Jd
  • 75.30.Kz