Skip to main content
Log in

Liquid 4He at Zero Temperature and the STLS Scheme

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Within the framework of the self-consistent scheme proposed by Singwi, Tosi, Land and Sjölander (STLS) for an interacting system we study the properties of superfluid liquid 4He. By employing the Aziz potential (HFD-B) as the interaction potential between helium atoms, we have calculated the static structure factor, the pair-correlation function, the elementary excitation spectrum and the effective two-body interaction as a function of wave-vector, for different densities. Our results show considerable improvement over the Ng–Singwi’s model potential of a hard core plus an attractive tail and are comparable with experimental data. We have compared our results with experimental data and with the results of some theoretical models. Agreement between our results and the experimental data for the static structure factor for the small k values is fairly good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. London, Nature 141, 643 (1938)

    ADS  Google Scholar 

  2. L. Tisza, Nature 141, 913 (1938)

    ADS  Google Scholar 

  3. L. Tisza, Phys. Rev. 72, 838 (1947)

    Article  ADS  Google Scholar 

  4. L.D. Landau, J. Phys. USSR 5, 71 (1941)

    Google Scholar 

  5. L.D. Landau, J. Phys. USSR 11, 91 (1947)

    Google Scholar 

  6. C.E. Campbell, E. Feenberg, Phys. Rev. 188, 396 (1969)

    Article  ADS  Google Scholar 

  7. M. Viviani, E. Buendia, A. Fabrocini, S. Rosati, Nuovo Cimento D 8, 561 (1985)

    Article  ADS  Google Scholar 

  8. J. Halinen, V. Apaja, M. Saarela, J. Low Temp. Phys. 126, 597 (2002)

    Article  Google Scholar 

  9. L.M. Sese, J. Mol. Phys. 99, 585 (2001)

    Article  ADS  Google Scholar 

  10. L.M. Sese, J. Mol. Phys. 100, 927 (2002)

    Article  ADS  Google Scholar 

  11. T. MacFarland, S.A. Vitiello, L. Reatto, G.V. Chester, M.H. Kalos, Phys. Rev. B 50, 13577 (1994)

    Article  ADS  Google Scholar 

  12. P.A. Whitlock, D.M. Ceperley, G.V. Chester, M.H. Kalos, Phys. Rev. B 19, 5598 (1979)

    Article  ADS  Google Scholar 

  13. M.H. Kalos, M.A. Lee, P.A. Whitlock, G.V. Chester, Phys. Rev. B 24, 115 (1981)

    Article  ADS  Google Scholar 

  14. J. Szwabinski, M. Weyrauch, Phys. Rev. B 64, 184512 (2001)

    Article  ADS  Google Scholar 

  15. K.S. Singwi, M.P. Tosi, R.H. Land, A. Sjölander, Phys. Rev. 176, 589 (1968)

    Article  ADS  Google Scholar 

  16. K.S. Singwi, M.P. Tosi, Solid State Phys. 36, 177 (1981), and references therein

    Article  Google Scholar 

  17. T.K. Ng, K.S. Singwi, Phys. Rev. B 35, 1708 (1987)

    Article  ADS  Google Scholar 

  18. T.K. Ng, K.S. Singwi, Phys. Rev. B 35, 6683 (1987)

    Article  ADS  Google Scholar 

  19. N. Nafari, A. Doroudi, Phys. Rev. B 51, 9019 (1995)

    Article  ADS  Google Scholar 

  20. A. Doroudi, Phys. Rev. B 58, 438 (1998)

    Article  ADS  Google Scholar 

  21. R.A. Aziz, F.R.W. McCourt, C.C.K. Wong, Mol. Phys. 61, 1487 (1987)

    Article  ADS  Google Scholar 

  22. L.E. Reichl, A Modern Course in Statistical Physics (Arnold, Sevenoaks, 1987), Chap. 7

    Google Scholar 

  23. D. Pines, P. Nozieres, The Theory of Quantum Liquids, vol. 1 (Benjamin, New York, 1966), Chap. 2

  24. C.H. Aldrich III, D. Pines, J. Low Temp. Phys. 25, 677 (1976)

    Article  ADS  Google Scholar 

  25. D. Pines, in Highlight of Condensed Matter Theory, ed. by F. Bassani et al. Proceedings of the International School of Physics “Enrico Fermi”, course LXXX-IX, Varena, Italy (North-Holland, Amsterdam, 1985), pp. 580–643

    Google Scholar 

  26. E.K. Achter, L. Meyer, Phys. Rev. 188, 291 (1969)

    Article  ADS  Google Scholar 

  27. C.E. Campbell, R. Folk, E. Krotscheck, J. Low Temp. Phys. 105, 13 (1996)

    Article  ADS  Google Scholar 

  28. D. Schiff, L. Ferlet, Phys. Rev. 160, 208 (1967)

    Article  ADS  Google Scholar 

  29. R.P. Feynman, in Progress in Low Temperature Physics, vol. 1, ed. by J. Gorter (North-Holland, Amsterdam, 1955), Chap. 2

  30. R.P. Feynman, M. Cohen, Phys. Rev. 102, 1189 (1956)

    Article  MATH  ADS  Google Scholar 

  31. D.G. Henshaw, A.D.B. Woods, Phys. Rev. 121, 1266 (1961)

    Article  ADS  Google Scholar 

  32. K.S. Singwi, A. Sjölander, M.P. Tosi, R.H. Land, Solid State Commun. 7, 1503 (1969)

    Article  ADS  Google Scholar 

  33. K.S. Singwi, A. Sjölander, M.P. Tosi, R.H. Land, Phys. Rev. B 1, 1044 (1970)

    Article  ADS  Google Scholar 

  34. M. Tas, M. Tomak, Phys. Rev. B 70, 235305 (2004)

    Article  ADS  Google Scholar 

  35. R.K. Moudgil, G. Senatore, Phys. Rev. B 66, 205316 (2002)

    Article  ADS  Google Scholar 

  36. C. Bulutary, B. Tanatar, Europhys. Lett. 43, 572 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Doroudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doroudi, A. Liquid 4He at Zero Temperature and the STLS Scheme. J Low Temp Phys 148, 65–77 (2007). https://doi.org/10.1007/s10909-007-9349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9349-2

PACS

Navigation