Skip to main content
Log in

Josephson Current Through Planar Pb–Cu–Pb Nanobridges

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We report on the fabrication and characterization of coplanar Pb–Cu–Pb nanobridges. In such superconductor (S) – normal metal (N) – superconductor junctions the Josephson coupling is mediated via the proximity effect at the S–N interface. For a junction in the dirty limit (ℓ≪ ξ N where ℓ is the mean free path and ξ N is the coherence length in N) the Josephson current I c is proportional to L N ·exp(−L N ). The relation defines an upper limit for the length L of the normal-metal bridge in order to observe Josephson coupling. A Josephson current of up to 750 μA at 1.5 K was observed in junctions with L N  = 0.82 which is only 1/8 of the theoretically expected value. The reduction might originate from oxide layers at the normal metal – superconductor interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardeen J., Cooper L.N, Schrieffer J.R, (1957). Phys. Rev. 108: 1175

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Josephson B.D, (1962). Phys. Lett. 1, 251

    Article  MATH  ADS  Google Scholar 

  3. Delin K.A, Kleinsasser A.W, (1996). Supercond. Sci. Technol. 9, 227

    Article  ADS  Google Scholar 

  4. Likharev K.K, (1979). Rev. Mod. Phys. 51, 101

    Article  ADS  Google Scholar 

  5. See special issue of Superlattices and Microstructures 25 (5/6), 627–1288 (1999).

    Google Scholar 

  6. Mesoscopic Electron Transport, L L.,. Sohn, L. Kouwenhoven, and G. Schön, (ed.) NATO ASI Series E 345, Kluwer Academic Publisher, Dordrecht (1997).

  7. Deutscher G., and P. G. de Gennes, in “Superconductivity”, R. D. Parks, (ed.) Marcel , New York (1969), Vol. 2, p.1005.

  8. de Gennes P.G., Guyon E., (1963). Phys. Lett. 3, 168

    Article  ADS  Google Scholar 

  9. Likharev K.K, (1976). Sov. Tech. Phys. Lett. 2, 12

    Google Scholar 

  10. Due to space limitations in the immediate vicinity of the junction a two-leads geometry has to be used. The finite residual resistance at low T in Fig. 3 is caused by the resistance of the two leads of the 2-wire probe.

  11. Andreev A.F, (1964). Sov. Phys. JETP 19: 1228

    Google Scholar 

  12. In the resistively- and capacitively-shunted junction (RCSJ) model the IV curve becomes hysteretic for large enough C (see Ref. 13 for details). As a consequence the maximal supercurrent might be reduced, e. g. by thermal fluctuation effects. However, this effect plays a minor role for the data in this study.

  13. Tinkham M., Introduction to superconductivity, McGraw-Hill International Edition, (1996).

  14. Usadel K.D, (1970). Phys. Rev. Lett. 25, 507

    Article  ADS  Google Scholar 

  15. Zaikin A.D, and Zharkov G.F, Sov. J. Low Temp. Phys. 7, 184 (1981); see also Ref. 16.

  16. Dubos P., Courtois H., Pannetier B., Wilhelm F.K, Zaikin A.D, Schön G., (2001). Phys. Rev. B 63: 064502

    Article  ADS  Google Scholar 

  17. G. Goll, Unconventional Superconductors, Springer Tracts in Modern Physics Vol. 214, Springer (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Goll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanisch, J., Goll, G. Josephson Current Through Planar Pb–Cu–Pb Nanobridges. J Low Temp Phys 147, 477–483 (2007). https://doi.org/10.1007/s10909-007-9324-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9324-y

PACS Numbers

Navigation