Journal of Low Temperature Physics

, Volume 147, Issue 3–4, pp 353–364 | Cite as

Electron-Phonon Anomaly Related to Charge Stripes: Static Stripe Phase Versus Optimally Doped Superconducting La1.85Sr0.15CuO4

  • D. Reznik
  • L. Pintschovius
  • M. Fujita
  • K. Yamada
  • G. D. Gu
  • J. M. Tranquada
Article

Inelastic neutron scattering was used to study the Cu-O bond-stretching vibrations in optimally doped La1.85Sr0.15CuO4 (Tc = 35 K) and in two other cuprates showing static stripe order at low temperatures, i.e., La1.48Nd0.4Sr0.12CuO4 and La1.875Ba0.125CuO4. All three compounds exhibit a very similar phonon anomaly, which is not predicted by conventional band theory. It is argued that the phonon anomaly reflects a coupling to charge inhomogeneities in the form of stripes, which remain dynamic in superconducting La1.85Sr0.15CuO4 down to the lowest temperatures. These results show that the phonon effect indicating stripe formation is not restricted to a narrow region of the phase diagram around the so-called 1/8 anomaly but occurs in optimally doped samples as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orgad in The Physics of Superconductors Vol. II: Superconductivity in Nanostructures, High-Tc and Novel Superconductors, Organic superconductors, K. H. Bennemann and J. B. Ketterson (eds.), Springer, Berlin, Heidelberg New York (2004); preprint at http://xxx.arxiv.org/pdf/cond-mat/0206217l (2002).Google Scholar
  2. 2.
    Zaanen J., Osman Y., Kruis H.V., Nussinov Z., Tworzydlo J. (2001). Phil. Mag. B 81, 1485–1531CrossRefADSGoogle Scholar
  3. 3.
    Tranquada J.M. et al. (1995). Nature 375, 561–563CrossRefADSGoogle Scholar
  4. 4.
    Fujita M., Goka H., Yamada K., Tranquada J.M., Regnault L.P. (2004). Phys. Rev. B 70, 104517CrossRefADSGoogle Scholar
  5. 5.
    Kivelson S.A. et al. (2003). Rev. Mod. Phys. 75, 1201–1241CrossRefADSGoogle Scholar
  6. 6.
    Reznik D., Pintschovius L., Itoh M., Iikubo S., Goka H., Fujita M., Yamada K., Gu G.D., Tranquada J.M. (2006). Nature 440: 1170CrossRefADSGoogle Scholar
  7. 7.
    Chaplot S.L., Reichardt W., Pintschovius L., Pyka N. (1995). Phys. Rev. B 52, 7230–7242CrossRefADSGoogle Scholar
  8. 8.
    McQueeney R.J. et al. (1999). Phys. Rev. Lett. 82, 628–631CrossRefADSGoogle Scholar
  9. 9.
    Pintschovius L., Braden M. (1999). Phys. Rev. B 60, R15041CrossRefADSGoogle Scholar
  10. 10.
    Devereaux T.P., Cuk T., Shen Z.-X., Nagaosa N. (2004). Phys. Rev. Lett. 93, 117004CrossRefADSGoogle Scholar
  11. 11.
    Bohnen K.-P., Heid R., Krauss M. (2003). Europhys. Lett. 64, 104–110CrossRefADSGoogle Scholar
  12. 12.
    Falter C., Hoffmann G.A. (2001). Phys. Rev. B 64, 054516CrossRefADSGoogle Scholar
  13. 13.
    Rösch O., Gunnarsson O. (2004). Phys. Rev. Lett. 92, 146403CrossRefADSGoogle Scholar
  14. 14.
    Ishihara S., Nagaosa N. (2004) Phys. Rev. B 69, 144520CrossRefADSGoogle Scholar
  15. 15.
    Becca F., Tarquini M., Grilli M., Di Castro C. (1996). Phys. Rev. B 54, 12443CrossRefADSGoogle Scholar
  16. 16.
    Kaneshita E., Ichioka M., Machida K. (2002). Phys. Rev. Lett. 88, 115501CrossRefADSGoogle Scholar
  17. 17.
    Vojta M., Vojta T., Kaul R.K. (2006). Phys. Rev. Lett. 97, 097001CrossRefADSGoogle Scholar
  18. 18.
    Homes C.C., Dordevic S.V., Gu G.D., Li Q., Valla T., Tranquada J.M. (2006). Phys. Rev. Lett. 96, 257002CrossRefADSGoogle Scholar
  19. 19.
    T. Valla, A. V. Fedorov, J. Lee, J. C. Davis, and G. D. Gu (unpublished).Google Scholar
  20. 20.
    Fukuda T. et al. (2005). Phys. Rev. B 71, 060501(R)ADSGoogle Scholar
  21. 21.
    Pintschovius L., Reznik D., Yamada K. (2006). Phys. Rev. B 74, 174514CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • D. Reznik
    • 1
    • 2
  • L. Pintschovius
    • 1
  • M. Fujita
    • 3
  • K. Yamada
    • 3
  • G. D. Gu
    • 4
  • J. M. Tranquada
    • 4
  1. 1.Institut für FestkörperphysikForschungszentrum KarlsruheKarlsruheGermany
  2. 2.Laboratoire Léon BrillouinCE SaclayGif-sur-Yvette CedexFrance
  3. 3.Institute for Material ResearchTohoku UniversitySendaiJapan
  4. 4.Physics DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations