Skip to main content
Log in

Dispersive Charge and Flux Qubit Readout as a Quantum Measurement Process

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We analyze the dispersive readout of superconducting charge and flux qubits as a quantum measurement process. The measurement oscillator frequency is considered much lower than the qubit frequency. This regime is interesting because large detuning allows for strong coupling between the measurement oscillator and the signal transmission line, thus allowing for fast readout. Due to the large detuning we may not use the rotating wave approximation in the oscillator-qubit coupling. Instead we start from an approximation where the qubit follows the oscillator adiabatically, and show that non-adiabatic corrections are small. We find analytic expressions for the measurement time, as well as for the back-action, both while measuring and in the off-state. The quantum efficiency is found to be unity within our approximation, both for charge and flux qubit readout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wendin and V. S. Shumeiko, in Handbook of Theoretical and Computational Nanotechnology, M. Rieth and W. Schommers, eds., American Scienti.c Publishers (2006).

  2. Johansson G., Tornberg L., Shumeiko V.S., Wendin G. (2006). J. Phys.: Condens. Matter 18: S901

    Article  ADS  Google Scholar 

  3. Nakamura Y., Pashkin Y.A., Tsai J.S. (1999). Nature (London) 398:786

    Article  ADS  Google Scholar 

  4. Astafiev O., Pashkin Yu.A., Nakamura Y., Yamamoto T., Tsai J.S. (2004). Phys. Rev. Lett. 93:267007

    Article  ADS  Google Scholar 

  5. Chiorescu I., Nakamura Y., Harmans C.J.P.M., Mooij J.E. (2003). Science 299:1869

    Article  ADS  Google Scholar 

  6. Vion D., Cottet A., Aassime A., Joyez P., Pothier H., Urbina C., Esteve D., Devoret M.H. (2002). Science 296:886

    Article  ADS  Google Scholar 

  7. Ithier G., Collin E., Joyez P., Meeson P.J., Vion D., Esteve D., Chiarello F., Shnirman A., Makhlin Y., Schrie J., Schön G. (2005). Phys. Rev. B 72:134519

    Article  ADS  Google Scholar 

  8. Grajcar M., Izmalkov A., Il’ichev E., Wagner Th., Oukhanski N., Hubner U., May T., Zhilyaev I., Hoenig H.E., Greenberg Ya.S., Shnyrkov V.I., Born D., Krech W., Meyer H.-G., Alec Maassen van den Brink, Amin M.H.S. (2004). Phys. Rev. B 69:060501(R)

    Article  ADS  Google Scholar 

  9. Lupascu A., Verwijs C.J.M., Schouten R.N., Harmans C.J.P.M., Mooij J.E. (2004). Phys. Rev. Lett. 93:177006

    Article  ADS  Google Scholar 

  10. Wallraff A., Schuster D.I., Blais A., Frunzio L., Majer J., Devoret M.H., Girvin S.M., Schoelkopf R.J. (2005). Phys. Rev. Lett. 95:060501

    Article  ADS  Google Scholar 

  11. Duty T., Johansson G., Bladh K., Gunnarsson D., Wilson C., Delsing P. (2005). Phys. Rev. Lett. 95:206807

    Article  ADS  Google Scholar 

  12. Sillanpä ä M.A., Lehtinen T., Paila A., Makhlin Yu., Roschier L., Hakonen P.J. (2005). Phys. Rev. Lett. 95:206806

    Article  ADS  Google Scholar 

  13. V. Braginski and F. Khalili, Quantum Measurements, Cambridge University Press (1992).

  14. Blais A., Huang R., Wallraff A., Girvin S.M., Schoelkopf R.J. (2004). Phys. Rev. A 69:062320

    Article  ADS  Google Scholar 

  15. Johansson G., Tornberg L., Wilson C. (2006). Phys. Rev. B 74:100504(R)

    ADS  Google Scholar 

  16. C. W. Gardiner and P. Zoller Quantum Noise, Springer-Verlag Berlin Heidelberg, 1991 (2000).

  17. Yurke B., Denker J.S. (1984). Phys. Rev. A 29:1419

    Article  ADS  Google Scholar 

  18. Shnirman A., Schön G., Hermon Z. (1997). Phys. Rev. Lett. 79:2371

    Article  ADS  Google Scholar 

  19. M. Devoret, Quantum Fluctuations in Electrical Circuits, Les Houches, Session LXIII (1995).

  20. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Massachusetts (1980).

  21. Friedman J.R., Patel V., Chen W., Tolpygo S.K., Lukens J.E. (2000). Nature 406:43f́b45

    Article  Google Scholar 

  22. Makhlin Y., Schön G., Shnirman A. (2001). Rev. Mod. Phys. 73:357

    Article  ADS  Google Scholar 

  23. L. Landau, Phys. Z. Sowjetunion 2, 46 (1932); C. Zener, Proceedings of the Royal Society A 137, 696 (1932).

  24. M. E. Peskin and D. V. Schröder, An Introduction to Quantum Field theory Westview Press (1995).

  25. S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics Oxford University Press (1997).

  26. Bertet P., Chiorescu I., Burkard G., Semba K., Harmans C.J.P.M., DiVincenzo D.P., Mooij J.E. (2005). Phys. Rev. Lett. 95:257002

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Tornberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tornberg, L., Johansson, G. Dispersive Charge and Flux Qubit Readout as a Quantum Measurement Process. J Low Temp Phys 146, 227–252 (2007). https://doi.org/10.1007/s10909-006-9261-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-006-9261-1

Keywords

PACS Numbers

Navigation