Skip to main content
Log in

SQUID-based Technique to Study the Elastic Properties of Solids at Very Low Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Mechanical oscillators are widely used for measurements of the elastic properties of solids at low temperatures. In most of such experiments mechanical displacements are detected via capacitive changes. In order to improve the sensitivity we have developed a novel detection technique relying on the high sensitivity of a commercial dc SQUID. To demonstrate the performance of the new setup we have measured the variation of the sound velocity and the internal friction of vitreous silica and of the borosilicate glass BK7 in the temperature range from 5 mK to 1 K. Our results agree favorably with former experiments where the displacement was detected capacitively. Furthermore, our results confirm that deviations of the elastic behavior of amorphous solids from the predictions of the standard tunneling model exist at very low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillips W.A. (1972). J. Low Temp. Phys. 7: 351

    Article  Google Scholar 

  2. Anderson P.W., Halperin B.I., Varma C.M. (1972). Philos. Mag. 25: 1

    Google Scholar 

  3. C. Enss, C. Bechinger, and M. von Schickfus, in Phonons 89, S. Hunklinger, W. Ludwig, and G. Weiss, eds. World Scientific, Singapore (1989), p.474.

  4. J. Classen, Diploma thesis, University of Heidelberg (1991).

  5. Esquinazi P., König R., Pobell F. (1992). Z. Phys. B 87: 305

    Article  Google Scholar 

  6. Enss C., Bechinger C., Weiss G., Hunklinger S. (1994). Ann. Phys. 3: 315

    Google Scholar 

  7. Parshin D.A. (1993). Z. Phys. B 91: 367

    Article  Google Scholar 

  8. Stockburger J.T., Grifoni M., Sassetti M. (1995). Phys. Rev. B 51: 2835

    Article  ADS  Google Scholar 

  9. Ju L., Blair D.G., Zhao C. (2000). Rep. Prog. Phys. 63: 1317

    Article  ADS  Google Scholar 

  10. Pereverzev S.V., Loshak A., Backhaus S., Davis J.C., Packard R.E. (1997). Nature 388: 449

    Article  ADS  Google Scholar 

  11. Backhaus S., Pereverzev S.V., Loshak A., Davis J.C., Packard R.E. (1997). Science 278: 1435

    Article  ADS  Google Scholar 

  12. Kleiman R.N., Kaminsky G.K., Reppy J.D., Pindak R., Bishop D.J. (1985). Rev. Sci. Instrum. 56: 2088

    Article  ADS  Google Scholar 

  13. White Jr. B.E., Pohl R.O. (1995). Phys. Rev. Lett. 75: 4437

    Article  ADS  Google Scholar 

  14. M. Heitz, PhD thesis, University of Heidelberg (2002).

  15. Classen J., Burkert T., Enss C., Hunklinger S. (2000). Adv. Solid State Phys. 40: 279

    Google Scholar 

  16. Liu X., Morse S.F., Vignola J.F., Photiadis D.M., Sarkissian A., Marcus M.H., Houston B.H. (2001). Appl. Phys. Lett. 78: 1346

    Article  ADS  Google Scholar 

  17. Classen J., Enss C., Hunklinger S. (2001). Phys. Rev. Lett. 86: 2480

    Article  ADS  Google Scholar 

  18. A. Fefferman, S. Dimov, C. Enss, R. O. Pohl, and J. M. Parpia, submitted to the proceedings of the 24th Conference on Low Temperature Physics, AIP Conference Proceedings.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Enss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Layer, M., Fleischmann, A. et al. SQUID-based Technique to Study the Elastic Properties of Solids at Very Low Temperatures. J Low Temp Phys 146, 295–313 (2007). https://doi.org/10.1007/s10909-006-9254-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-006-9254-0

Keywords

PACS Numbers

Navigation