Skip to main content
Log in

Liquid 4He: Contributions to First Principles Theory. I. Quantized Vortices and Thermohydrodynamic Properties

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Quantized vortices in liquid 4 He are treated quantum mechanically with realistic many-body model wave functions in variational calculations for energy and core structure at T =  0 K. A rectilinear vortex and both small and large vortex rings are studied. Calculated results indicate that rotons are not just small-quantized vortex rings. We compare our results for quantized vortices with experimental data and with theoretical results calculated by others. Correlated basis functions and standard statistical mechanics are used in treating thermohydrodynamic properties of flowing liquid 4 He. The Helmholtz potential is evaluated for a model of the flowing liquid that includes phonons and interacting rotons. Characteristics of this potential are discussed. The physical nature of negative superfluid density is explained. Superfluid density, entropy, and specific heat for liquid He-II are evaluated using our theory and the results are compared with experimental data. Very good agreement is found, except in a small temperature range near the λ transition. We indicate that results obtained here can be used in extending the theory to include thermally excited vortices and to investigate the possible role of vortices in accounting for the λ transition in liquid 4 He.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feenberg E., (1969). Theory of Quantum Fluids. Academic, New York

    Google Scholar 

  2. Hirschfelder J.O., Curtiss C.F., Bird R. B., (1964). Molecular Theory of Gases and Liquids. Wiley, New York

    Google Scholar 

  3. Aziz R.A., McCourt F.R.W., Wong C.C.K., (1987). Mol. Phys. 61: 1487

    Article  Google Scholar 

  4. Jackson H.W., Feenberg E., (1961). Ann. Phys. (N.Y.) 15, 266

    Article  ADS  MathSciNet  Google Scholar 

  5. H. W. Jackson, Ph.D. Thesis, Washington University (1962); Diss. Abstr. 24, 1206 (1963).

  6. Campbell C.E., Feenberg E., (1969). Phys. Rev. 188, 396

    Article  ADS  Google Scholar 

  7. Jackson H.W., (1979). Phys. Rev. B 19: 2556

    Article  ADS  Google Scholar 

  8. Feynman R.P., (1954). Phys. Rev. 94, 262

    Article  ADS  Google Scholar 

  9. Feynman R.P., Cohen M., (1956). Phys. Rev. 102: 1189

    Article  ADS  Google Scholar 

  10. Jackson H.W., Feenberg E., (1962). Rev. Mod. Phys. 34, 686

    Article  ADS  Google Scholar 

  11. Lee D.K., Lee F.J., (1975). Phys. Rev. B 11: 4318

    Article  ADS  Google Scholar 

  12. Campbell C.E., Pinski F.J., (1979). Nucl. Phys. A 328, 210

    Article  ADS  Google Scholar 

  13. Chang C.C., Campbell C.E., (1976). Phys. Rev. B 13: 3779

    Article  ADS  Google Scholar 

  14. Cowley R.A., Woods A.D.B., (1971). Can. J. Phys. 49, 177

    ADS  Google Scholar 

  15. Apaja V., Saarela M., (1998). Phys. Rev. B 57: 5338

    Article  ADS  Google Scholar 

  16. Galli D.E., Cechetti E., Reatto L., (1996). Phys. Rev. Lett. 77: 5401

    Article  ADS  Google Scholar 

  17. Jackson H.W., Phys. Rev. B 26, 66 (1982) (see especially p. 70).

    Google Scholar 

  18. H. W. Jackson, Phys. Rev. B 28, 1286 (1983) (see especially p. 1288).

    Google Scholar 

  19. Prix R., (2004). Phys. Rev. D 69: 043001–1

    Article  ADS  Google Scholar 

  20. Jackson H.W., (1978). Phys. Rev. B 18: 6082

    Article  ADS  Google Scholar 

  21. H. W. Jackson, e-print, http://arxiv.org/abs/cond-mat/0603082 (2006).

  22. Ref. 7, p. 2562.

  23. Eckart C., (1938). Phys. Rev. 54, 920

    Article  ADS  Google Scholar 

  24. Zilsel P.R., (1950). Phys. Rev. 79, 309

    Article  ADS  MathSciNet  Google Scholar 

  25. F. London, Superfluids, Macroscopic Theory of Superfluid Helium, Vol. II, Dover, New York (1964) (see especially Secs. 19 and 20).

  26. Lhullier D., Francois M., Karatchentzeff M., (1975). Phys. Rev. B 12: 2656

    Article  ADS  Google Scholar 

  27. Temperley H.N.V., (1952). Proc. Phys. Soc. Lond. A 65, 490

    Article  ADS  Google Scholar 

  28. Dingle R.B., (1952). Philos. Mag. Suppl. 1, 111

    Google Scholar 

  29. L. Landau, J. Phys. (U.S.S.R) 5, 71 (1941) (see reprint in Ref. 30).

  30. Khalathikov I.M., (1965). Introduction to the Theory of Superfluidity, translated by P. C. Hohenberg, Benjamin, New York

    Google Scholar 

  31. Kagiwada R.S., Fraser J.C., Rudnick I., Bergman D., (1969). Phys. Rev. Lett. 22, 338

    Article  ADS  Google Scholar 

  32. Clements B.E., Krotscheck E., Saarela M., (1997-I). Phys. Rev. B 55: 5959

    Article  ADS  Google Scholar 

  33. Ref. 25, Sec. 22.

  34. Ref. 25, p. 199.

  35. Ref. 1, pp. 166–168.

  36. L. Landau, J. Phys. (U.S.S.R.) 11, 91 (1947) (see reprint in Ref. 30).

  37. L. Onsager, Nuovo Cimento Suppl. 2 to Vol. 6, 249–250 (discussion on paper by C. J. Gorter).

  38. R. P. Feynman, in Progress in Low Temperature Physics, Vol. 34 C. J. Gorter (ed.) Inter-science Publishers, New York (1955) (see especially pp. 39, 40).

  39. Vijfeijken A.G., Walraven A., Staas F.A., (1969). Physica 44, 415

    Article  ADS  Google Scholar 

  40. S. Putterman, Phys. Rep. (Section C of Phys. Lett.) 4, 69 (1972) (see especially p. 92).

  41. Ketola K.S., Wang S., Hallock R.B., (1992). Phys. Rev. Lett. 68, 201

    Article  ADS  Google Scholar 

  42. Taborek P., Rutledge J.E., (1992). Phys. Rev. Lett. 68: 2184

    Article  ADS  Google Scholar 

  43. Apaja V., Krotscheck E., (2003). Phys. Rev. Lett. 91: 225302–1

    Article  ADS  Google Scholar 

  44. Ref. 30, p. 8.

  45. Miller M.D., (1976). Phys. Rev. B 14: 3937

    Article  ADS  Google Scholar 

  46. G. W. Rayfield and F. Reif, Phys. Rev. Lett. 11, 305 (1963); Phys. Rev. 136, A1194 (1964).

  47. Steingart M., Glaberson W.I., (1972). J. Low Temp. Phys. 8, 61

    Article  Google Scholar 

  48. W. I. Glaberson and R. J. Donnelly, in Progress in Low Temperature Physics, Vol. 9, Chapter 1, North-Holland, Amsterdam (1986) (see especially pp. 18, 19).

  49. Sadd M., Chester G.V., Reatto L., (1997). Phys. Lett. 79: 2490

    Article  Google Scholar 

  50. Chester G.V., Metz R., Reatto L., (1968). Phys. Rev. 175, 275

    Article  ADS  Google Scholar 

  51. Vitiello S.A., Reatto L., Chester G.V., Kalos M.H., (1996). Phys. Rev. B 54: 1205

    Article  ADS  Google Scholar 

  52. Giorgini S., Boronat J., Casulleras J., (1996). Phys. Rev. Lett. 77: 2754

    Article  ADS  Google Scholar 

  53. A. L. Fetter, in The Physics of Liquid and Solid Helium, Part I, Chap. 3, K. H. and J. B. Ketterson (eds.), Wiley, New York (1976).

  54. E. Krotscheck, in Microscopic Quantum Theories and Their Applications, J. Navarro and A. Polls (eds.), Springer-Verlag, Berlin (1998), p. 187.

  55. Rayfield G.W., (1968). Phys. Rev. 168, 222

    Article  ADS  Google Scholar 

  56. H. Lamb, Hydrodynamics, 6 ed. Dover, New York (1932), p. 161.

  57. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Addison-Wesley, Reading, Mass., (1959), p. 33, Footnote 2.

  58. Donnelly R.J., (1991). Quantized Vortices in Helium II. Cambridge, New York

    Google Scholar 

  59. Ref. 53, p. 215.

  60. Ref. 58, p. 115.

  61. R. J. Donnelly, in Statistical Mechanics in the Natural Sciences, S. L. Mintz and S. M. Widmayer (eds.), Plenum, New York (1974), p. 359.

  62. Ref. 53, pp. 215, 216.

  63. Roberts P.H., Grant J., (1971). J. Phys. A 4, 55

    Article  ADS  Google Scholar 

  64. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, U.S. Nat’l Bur. Stand. Applied Mathematics Series No. 55, U.S. GPO, Washington, DC (1964), p. 231.

  65. Ref. 58, p. 112.

  66. Dietrich O.W., Graf E.H., Huang C.H., Passell L., (1972). Phys. Rev. A 5: 1377

    Article  ADS  Google Scholar 

  67. Ref. 47, p. 74.

  68. Ref. 25, p. 58.

  69. Donnelly R.J., Riegelmann R.A., Barenghi C.F., (1992). The Observed Properties of Liquid Helium at the Saturated Vapor Pressure. Univ. of Oregon, Eugene, Oregon

    Google Scholar 

  70. Ref. 30, p. 13.

  71. Wilks J., The Properties of Liquid and Solid Helium, Clarendon, Oxford (1967), Appendix A1.

  72. Buckingham M.J., Fairbank W.M., in Progress in Low Temperature Physics, Vol. 3, Chapter 3, North-Holland, Amsterdam (1961).

  73. T. L. Hill, Statistical Mechanics, Chap. 6 (see especially Eq. (37.9)) McGraw-Hill, New York (1956)

  74. M. D. Miller and C.-W. Woo (private communication).

  75. Ref. 7, pp. 2577, 2578.

  76. Ref. 53, Eq. (3.2.6).

  77. W. H. Keesom and K. W. Taconis, Physica 4, 28 (1937); 4, 256 (1937); 5, 270 (1938).

  78. Ref. 25, pp. 27, 28.

  79. Ref. 1, Sec. 4.3.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, H.W. Liquid 4He: Contributions to First Principles Theory. I. Quantized Vortices and Thermohydrodynamic Properties. J Low Temp Phys 146, 329–392 (2007). https://doi.org/10.1007/s10909-006-9252-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-006-9252-2

Keywords

PACS Numbers:

Navigation