Skip to main content
Log in

The Frequency Dependence of Critical-Velocity Behavior in the Oscillatory Flow of Superfluid 4He Through a 2 × 2-μm Aperture in a Thin Foil

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The critical-velocity behavior of oscillatory superfluid 4He flow through a 2  ×  2-μm aperture in a 0.1-μm-thick metal foil has been studied from 0.36 to 2.10 K at frequencies from less than 50 Hz up to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during which the frequency remained below 400 Hz, the critical velocity was a nearly-linearly decreasing function of increasing temperature throughout the region of temperature studied. In runs at the lowest frequencies, isolated 2π phase slips could be observed at the onset of dissipation. In runs with frequencies higher than 400 Hz, downward curvature was observed in the decrease of critical velocity with increasing temperature. In addition, above 500 Hz an alteration in supercritical behavior was seen at the lower temperatures, involving the appearance of large-energy-loss events. These irregular events typically lasted a few tens of half-cycles of oscillation and could involve hundreds of times more energy loss than would have occurred in a single complete 2π phase slip at maximum flow. The temperatures at which this altered behavior was observed rose with frequency, from ~ 0.6 K and below at 500 Hz, to ~ 1.0 K and below at 1880 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varoquaux.E., Avenel.O., Meisel M.W. (1987). Can. J. Phys. 65: 1377

    ADS  Google Scholar 

  2. Varoquaux E., W. Zimmermann Jr., and Avenel O., in Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids, A. F. G. Wyatt and H. J. Lauter (eds.), Plenum Press, New York (1991), p. 343.

  3. Zimmermann W. Jr.,(1996). Contemp. Phys. 37: 219

    ADS  Google Scholar 

  4. Varoquaux E., in Topological Defects and Non-Equilibrium Dynamics of Symmetry-Breaking Phase Transitions, Y. M. Bunkov and H. Godfrin (eds.), Kluwer, Dordrecht (2000), p. 303.

  5. Varoquaux E., Avenel O., Yu. Mukharsky, and Hakonen P., in Proceedings of the Workshop on Quantized Vortex Dynamics and Superfluid Turbulence, Cambridge, 2000, Vinen W.F. Barenghi C.F., and Donnelly R.J., (eds.), Springer-Verlag, Berlin (2001), p. 36.

  6. Amar A., Sasaki Y., Lozes R.L., Davis J.C., Packard R.E., (1992). Phys. Rev. Lett. 68: 2624

    Article  ADS  Google Scholar 

  7. Packard R.E., Davis J.C., (1994). Physica B 197: 315

    Article  ADS  Google Scholar 

  8. Steinhauer J., Schwab K., Yu. Mukharsky, Davis J.C., Packard R.E., (1995). Phys. Rev. Lett. 74: 5056

    Article  ADS  Google Scholar 

  9. Steinhauer J., Schwab K., Mukharsky Yu., Davis J.C., Packard R.E., (1995). J Low Temp Phys 100: 281

    Article  ADS  Google Scholar 

  10. Packard R.E., (1998). Rev. Mod. Phys. 70: 641

    Article  ADS  Google Scholar 

  11. Lindensmith C.A., Ph.Thesis D., University of Minnesota (1996). Available from UMI at web address www.umi.com

  12. Lindensmith C.A., Flaten J.A., Zimmermann W. Jr., (1996). Czech. J. Phys 46(Suppl. S1): 131

    Article  ADS  Google Scholar 

  13. Feynman R.P., in Progress in Low Temperature Physics, Vol. I, C. J. Gorter (ed.), North-Holland Publishing Co., Amsterdam (1955), Chap. II.

  14. Schwarz K.W., (1994). Physica B 197: 324

    Article  ADS  Google Scholar 

  15. Zimmermann W. Jr., (1993). J. Low Temp. Phys. 91: 219

    Article  ADS  Google Scholar 

  16. Flaten J.A., Lindensmith C.A., and W. Zimmermann Jr., J. Low Temp. Phys. 101 743 (1995). In Fig. 3 of this article, the horizontal scales of the main figure and the inset should be labeled “cycle number” rather than “half-cycle number”. The phrase “once in each of ~ 14 consecutive half-cycles” beginning at the bottom of p. 747 should be replaced by “twice in each of ~ 14 consecutive cycles”.

  17. Flaten J.A., Ph.Thesis D., University of Minnesota (1997). Available from UMI at web address www.umi.com

  18. Flaten J.A., Lindensmith C.A., and W. Zimmermann Jr., http://arxiv.org/cond-mat/0502037

  19. Beecken B.P., Zimmermann W. Jr., (1987). Phys. Rev. B 35: 74

    Article  ADS  Google Scholar 

  20. Beecken B.P., Zimmermann W. Jr., (1987). Phys Rev B 35: 1630

    Article  ADS  Google Scholar 

  21. Khalatnikov I.M., (1965). An Introduction to the Theory of Superfluidity. Benjamin, New York

    Google Scholar 

  22. Anderson P.W., Rev. Mod. Phys. 38 298 (1966); also in Quantum Fluids, D. F. Brewer (ed.), North-Holland Publishing Co., Amsterdam (1966), p. 146.

  23. Maynard J., (1976). Phys. Rev. B 14: 3868

    Article  ADS  Google Scholar 

  24. Brooks J.S., Donnelly R.J., (1977). J. Phys. Chem. Ref. Data 6: 51

    Article  ADS  Google Scholar 

  25. Huggins E.R., Phys. Rev. A 1, 327 and 332 (1970).

  26. Zimmermann W. Jr., (1993). J. Low. Temp. Phys. 93: 1003

    Article  ADS  Google Scholar 

  27. Flaten J.A., Borden C.T., Lindensmith C.A., and W. Zimmermann Jr., “Simulations of Vortex Evolution and Phase Slip in Oscillatory Potential Flow of the Superfluid Component of 4He through an aperture,” http://arxiv.org/cond-mat/0502039 and J. Low Temp. Phys. (this issue, following article).

  28. Bak P., (1996). How Nature Works. Springer-Verlag Copernicus, New York

    MATH  Google Scholar 

  29. Jensen H.J., (1998). Self-Organized Criticality. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  30. Jaeger H.M., Liu C.-H., Nagel S.R., (1989). Phys. Rev. Lett 62: 40

    Article  ADS  Google Scholar 

  31. Plourde B., Nori F., Bretz M., (1993). Phys. Rev. Lett. 71: 2749

    Article  ADS  Google Scholar 

  32. Field S., Witt J., Nori F., Ling X., (1995). Phys. Rev. Lett. 74: 1206

    Article  ADS  Google Scholar 

  33. Hess G.B., (1971). Phys. Rev. Lett. 27: 977

    Article  ADS  Google Scholar 

  34. G. L. Schofield Jr., Ph.Thesis D., University of Michigan (1971). Available from UMI at web address www.umi.com

  35. Sabo B.B., Ph.D. Thesis, University of Minnesota (1973). Available from UMI at web address www.umi.com

  36. Avenel O., Ihas G.G., Varoquaux E., (1993). J. Low. Temp. Phys. 93: 1031

    Article  ADS  Google Scholar 

  37. Zimmermann W. Jr., Lindensmith C.A., Flaten J.A., (1998). J. Low. Temp. Phys 110: 497

    Article  Google Scholar 

  38. Niemetz M., Schoepe W., (2004). J. Low Temp. Phys. 135: 447

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zimmermann Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flaten, J.A., Lindensmith, C.A. & Zimmermann, W. The Frequency Dependence of Critical-Velocity Behavior in the Oscillatory Flow of Superfluid 4He Through a 2 × 2-μm Aperture in a Thin Foil. J Low Temp Phys 142, 725–752 (2006). https://doi.org/10.1007/s10909-006-9205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-006-9205-9

Keywords

Navigation