Skip to main content
Log in

Third Sound and Stability of 3He–4He Mixture Films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

In this paper, we study third sound in 3He–4He mixture films on several representative substrates: Nuclepore, glass, Li, and Na. This work extends previous more technical work which focused on the strongly binding substrates Nuclepore and glass. We proceed from a first-principles, microscopic theory utilizing the variational, hypernetted chain/Euler-Lagrange (HNC–EL) theory as applied to inhomogeneous boson systems. We calculate chemical potentials for both the 4He superfluid film and the physisorbed 3He. Numerical density derivatives of the chemical potentials lead to the sought-after third sound speeds. On all substrates, the third sound speeds show a series of oscillations driven by the layered structure of the 4He film, this is the case even for the very weakly binding Na substrate despite fairly structureless chemical potentials. We study the effect on the third sound response of adding a small amount of 3He to the film. We find, in agreement with our previous results, that the effect of the 3He depends sensitively on the particular 4He film coverage. The third sound speed can either increase or decrease. In fact, in some regimes, the added 3He destabilizes the film and can drive “layering transitions” leading to quite complicated geometric structures of the film in which the outermost layer consists of phase-separated regimes of 3He and 4He. Finally, we examine the range of applicability of the usual film-averaged hydrodynamic description. We find that at least up to film thicknesses of six liquid layers, there is no regime in which the usual hydrodynamic expression is applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkins K.R. and I. Rudnick, in Progress in Low Temperature Physics, edited by C. Gorter (North-Holland, Amsterdam, 1970), Vol. IV, Chap. 2.

  2. D. J. Bergman (1975) NoChapterTitle W. P. Mason R. N. Thurston (Eds) Physical Acoustics: Principles and Methods NumberInSeriesXI Academic New York

    Google Scholar 

  3. F. M. Ellis R. B. Hallock M. D. Miller R. A. Guyer (1981) Phys. Rev. Lett. 46 1461 Occurrence Handle10.1103/PhysRevLett.46.1461

    Article  Google Scholar 

  4. R. A. Guyer M. D. Miller (1982) Phys Rev B 25 5749 Occurrence Handle10.1103/PhysRevB.25.5749

    Article  Google Scholar 

  5. R. D. Puff J. G. Dash (1980) Phys. Rev. B 21 2815 Occurrence Handle10.1103/PhysRevB.21.2815

    Article  Google Scholar 

  6. Krotscheck E. and Miller M.D. (2005). Phys. Rev. B (in Press).

  7. B. E. Clements E. Krotscheck H. J. Lauter (1993) Phys. Rev. Lett. 70 1287 Occurrence Handle10.1103/PhysRevLett.70.1287 Occurrence Handle10054338

    Article  PubMed  Google Scholar 

  8. J. M. Valles R. M. Heinrichs R. B. Hallock (1986) Phys. Rev. Lett. 56 1704 Occurrence Handle10.1103/PhysRevLett.56.1704 Occurrence Handle10032747

    Article  PubMed  Google Scholar 

  9. P. A. Sheldon R. B. Hallock (1994) Phys. Rev. B 50 16082 Occurrence Handle10.1103/PhysRevB.50.16082

    Article  Google Scholar 

  10. J. C. Noiray D. Sornette J. P. Romagnan J. P. Laheurte (1984) Phys. Rev. Lett. 53 2421 Occurrence Handle10.1103/PhysRevLett.53.2421

    Article  Google Scholar 

  11. D. T. Sprague N. Alikacem R. B. Hallock (1995) Phys. Rev. Lett. 74 4479 Occurrence Handle10.1103/PhysRevLett.74.4479 Occurrence Handle10058517

    Article  PubMed  Google Scholar 

  12. R. H. Higley D. T. Sprague R. B. Hallock (1989) Phys. Rev. Lett. 63 2570 Occurrence Handle10.1103/PhysRevLett.63.2570 Occurrence Handle10040929

    Article  PubMed  Google Scholar 

  13. J. H. Scholtz E. O. McLean I. Rudnick (1974) Phys. Rev. Lett. 32 147 Occurrence Handle10.1103/PhysRevLett.32.147

    Article  Google Scholar 

  14. E. S. Sabisky C. H. Anderson (1973) Phys. Rev. A 7 790 Occurrence Handle10.1103/PhysRevA.7.790

    Article  Google Scholar 

  15. A. Chizmeshya M. W. Cole E. Zaremba (1998) J. Low Temp. Phys. 110 677 Occurrence Handle10.1023/A:1022556227148

    Article  Google Scholar 

  16. E. Cheng G. Ihm M. W. Cole (1989) J. Low Temp. Phys. 74 519 Occurrence Handle10.1007/BF00682673

    Article  Google Scholar 

  17. G. Vidali G. Ihm H.-Y. Kim M. W. Cole (1991) Surface Sci. Rep. 12 133

    Google Scholar 

  18. B. E. Clements J. L. Epstein E. Krotscheck M. Saarela (1993) Phys. Rev. B 48 7450 Occurrence Handle10.1103/PhysRevB.48.7450

    Article  Google Scholar 

  19. B. E. Clements H. Forbert E. Krotscheck M. Saarela (1994) J. Low Temp. Phys. 95 849 Occurrence Handle10.1007/BF00754718

    Article  Google Scholar 

  20. V. Apaja E. Krotscheck (2002) NoChapterTitle E. Krotscheck J. Navarro (Eds) Microscopic Approaches to Quantum Liquids in Confined Geometries World Scientific Singapore 205–268

    Google Scholar 

  21. E. Krotscheck, in Microscopic Quantum Many-Body Theories and their Applications, Vol. 510 of Lecture Notes in Physics, J. Navarro and A. Polls, eds., Springer, Heidelberg (1998), pp. 187–250.

  22. B. E. Clements E. Krotscheck M. Saarela (1997) Phys. Rev. B 55 5959 Occurrence Handle10.1103/PhysRevB.55.5959

    Article  Google Scholar 

  23. E. Feenberg (1969) Theory of Quantum Fluids Academic New York

    Google Scholar 

  24. C. E. Campbell (1977) NoChapterTitle C. A. Croxton (Eds) Progress in Liquid Physics Wiley London 213–308

    Google Scholar 

  25. J. W. Clark (1979) NoChapterTitle D. H. Wilkinson (Eds) Progress in Particle and Nuclear Physics NumberInSeries2 Pergamon Press Ltd Oxford 89–199

    Google Scholar 

  26. D. O. Edwards W. F. Saam (1978) NoChapterTitle D. F. Brewer (Eds) Progress in Low Temperature Physics NumberInSeries7A North Holland New York, Amsterdam 282–369

    Google Scholar 

  27. N. Alikacem D. T. Sprague R. B. Hallock (1991) Phys. Rev. Lett. 67 2501 Occurrence Handle10.1103/PhysRevLett.67.2501 Occurrence Handle10044442

    Article  PubMed  Google Scholar 

  28. D. T. Sprague N. Alikacem P. A. Sheldon R. B. Hallock (1994) Phys. Rev. Lett. 72 384 Occurrence Handle10.1103/PhysRevLett.72.384 Occurrence Handle10056417

    Article  PubMed  Google Scholar 

  29. P. A. Sheldon R. B. Hallock (1996) Phys. Rev. Lett. 77 2973 Occurrence Handle10.1103/PhysRevLett.77.2973 Occurrence Handle10062099

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Krotscheck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krotscheck, E., Miller, M.D. Third Sound and Stability of 3He–4He Mixture Films. J Low Temp Phys 141, 1–25 (2005). https://doi.org/10.1007/s10909-005-7512-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-7512-1

Keywords

Navigation