Skip to main content
Log in

Phonon Mediated Helium Atom Transmission through Superfluid Helium Four

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript


We report results of experiments in which pulses of helium vapor with translational energies of 3 K are directed at a thin film of superfluid helium at a temperature of about 0.2 K suspended over a cesium covered orifice in a platinum film. The response of the superfluid film was detected by a super-conducting titanium bolometer placed on the side of the film opposite to that of the source. For films of approximately 1 mm in thickness we find no response of the bolometer within the limits of our detector. However, for films of less than 100μ thickness, we find a response which is of the same temporal shape, but smaller in amplitude, than that of the orifice when it is not covered with superfluid helium. We interpret these results to mean that we are seeing phonon mediated transmission in the thin films. Roton and condensate mediated transmission amplitudes for these conditions are apparently too small for us to detect in any of the films. This result is consistent with the theoretical results of Sobnack and Inkson [M. B. Sobnack, J. C. Inkson, and J. C. H. Fung, Phys. Rev. B 60, 3465 (1999)] concerning the amplitude of roton to atom and photon to atom conversion as a function of the atomic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. J.W. Halley C.E. Campbell C.F. Giese K. Goetz (1993) Phys. Rev. Lett. 71 2429 Occurrence Handle10.1103/PhysRevLett.71.2429 Occurrence Handle10054678

    Article  PubMed  Google Scholar 

  2. J.W. Halley (1994) Physica B 97 175

    Google Scholar 

  3. J.W. Halley (1993) J. Low Temp. Phys. 93 893 Occurrence Handle10.1007/BF00692037

    Article  Google Scholar 

  4. A. Setty J.W. Halley C.E. Campbell (1997) Phys. Rev. Lett. 79 3930 Occurrence Handle10.1103/PhysRevLett.79.3930

    Article  Google Scholar 

  5. J. Harms J.P. Toennies (1999) Phys. Rev. Lett. 83 344 Occurrence Handle10.1103/PhysRevLett.83.344

    Article  Google Scholar 

  6. C.D.H. Williams A.F.G. Wyatt (2003) Phys. Rev. Lett. 91 085301 Occurrence Handle10.1103/PhysRevLett.91.085301 Occurrence Handle14525250

    Article  PubMed  Google Scholar 

  7. M.B. Sobnack J.C. Inkson J.C.H. Fung (1999) Phys. Rev. B 60 3465 Occurrence Handle10.1103/PhysRevB.60.3465

    Article  Google Scholar 

  8. A. Wynveen K.A. Lidke M.C. Williams C.F. Giese J.W. Halley (2003) Phys. Rev. E 67 026311 Occurrence Handle10.1103/PhysRevE.67.026311

    Article  Google Scholar 

  9. M.C. Williams C.F. Giese J.W. Halley (1996) Phys. Rev. B 53 6627 Occurrence Handle10.1103/PhysRevB.53.6627

    Article  Google Scholar 

  10. K.A. Lidke M.C. Williams A. Wynveen J.W. Halley (2000) J. Low Temp. Phys. 121 351 Occurrence Handle10.1023/A:1017537310600

    Article  Google Scholar 

  11. R.A. Sherlock A.F.G. Wyatt (1983) J. Phys. E: Sci. Instrum. 16 673 Occurrence Handle10.1088/0022-3735/16/7/026

    Article  Google Scholar 

  12. C.G.B. Baker A.F.G. Wyatt (1987) J. Phys. E: Sci. Instrum. 12 1461 Occurrence Handle10.1088/0022-3735/20/12/005

    Article  Google Scholar 

  13. N. Mulders A.F.G. Wyatt (1994) Physica B 194–196 539

    Google Scholar 

  14. P.E. Sokol W.M. Snow (1991) NoChapterTitle A.G.F. Wyatt H.J. Lauter (Eds) Excitations in Two Dimensional and Three Dimensional Quantum Fluids Plenum Press New York 343

    Google Scholar 

  15. D.R. Swanson D.O. Edwards (1988) Phys. Rev. B 37 1539 Occurrence Handle10.1103/PhysRevB.37.1539

    Article  Google Scholar 

  16. D.O. Edwards P.P. Fatouros (1978) Phys. Rev. B 17 2147 Occurrence Handle10.1103/PhysRevB.17.2147

    Article  Google Scholar 

  17. D.O. Edwards P. Fatouros C.G. Ihas P. Mrozinski S.Y. Shen F.M. Gasparini C.P. Tam (1975) Phys. Rev. Lett. 34 1153 Occurrence Handle10.1103/PhysRevLett.34.1153

    Article  Google Scholar 

  18. D.O. Edwards C.G. Ihas C.P. Tam (1977) Phys. Rev. B 16 3122 Occurrence Handle10.1103/PhysRevB.16.3122

    Article  Google Scholar 

  19. M.A.H. Tucker A.F.G. Wyatt (1998) J. Low Temp. Phys. 110 425 Occurrence Handle10.1023/A:1022521824905

    Article  Google Scholar 

  20. M.A.H. Tucker A.F.G. Wyatt (1992) J. Phys. Condens. Matter 4 7745 Occurrence Handle10.1088/0953-8984/4/38/008

    Article  Google Scholar 

  21. A.F.G. Wyatt (1992) J. Low Temp. Phys. 87 453 Occurrence Handle10.1007/BF00114914

    Article  Google Scholar 

  22. C.D.H. Williams M.B. Sobnack (2002) J. Low Temp. Phys. 126 603 Occurrence Handle10.1023/A:1013731604699

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. W. Halley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lidke, K.A., Wynveen, A., Baisch, N. et al. Phonon Mediated Helium Atom Transmission through Superfluid Helium Four. J Low Temp Phys 140, 429–449 (2005).

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: