Skip to main content
Log in

Cavitation of Electron Bubbles in Liquid Helium Below Saturation Pressure

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have used a Hartree–type electron–helium (e–He) potential together with a density functional description of liquid 4He and 3He to study the explosion of electron bubbles submitted to a negative pressure. The critical pressure at which bubbles explode has been determined as a function of temperature. It has been found that this critical pressure is very close to the pressure at which liquid helium becomes globally unstable in the presence of electrons. It is shown that at high temperatures the capillary model overestimates the critical pressures. We have checked that a commonly used and rather simple e-He interaction yields results very similar to those obtained using the more accurate Hartree-type interaction. We have estimated that the crossover temperature for thermal to quantum nucleation of electron bubbles is very low, of the order of 6 mK for 4He.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JA. Nissen E. Bodegom LC. Brodie J. Semura (1989) Phys Rev B 40 617

    Google Scholar 

  2. Q Xiong HJ. Maris (1991) J Low Temp Phys. 82 105 Occurrence Handle1:CAS:528:DyaK3MXisFCitLw%3D

    CAS  Google Scholar 

  3. H. Lambaré P. Roche S. Balibar HJ. Maris O.A. Andreeva C. Guthmann KO. Keshishev E. Rolley (1998) Eur Phys J B 2 381

    Google Scholar 

  4. S. Balibar (2002) J Low Temp Phys. 129 363 Occurrence Handle1:CAS:528:DC%2BD38XpsVSktbk%3D

    CAS  Google Scholar 

  5. T. Satoh M. Morishita M. Ogata S. Katoh (1992) Phys Rev Lett. 69 335 Occurrence Handle1:CAS:528:DyaK38XkvFOmu7s%3D Occurrence Handle10046647

    CAS  PubMed  Google Scholar 

  6. S. Balibar C. Guthmann H. Lambaré P. Roche E. Rolley HJ. Maris (1995) J Low Temp Phys. 101 271 Occurrence Handle1:CAS:528:DyaK2MXpt1Oqsrw%3D

    CAS  Google Scholar 

  7. X. Chavanne S. Balibar F. Caupin (2002) J Low Temp Phys. 126 615 Occurrence Handle10.1023/A:1013735705607 Occurrence Handle1:CAS:528:DC%2BD38XhvF2nsrc%3D

    Article  CAS  Google Scholar 

  8. J. Classen C.-K. Su HJ. Maris (1996) Phys Rev Lett. 77 2006 Occurrence Handle1:CAS:528:DyaK28XltlGqu7w%3D Occurrence Handle10061833

    CAS  PubMed  Google Scholar 

  9. J. Classen C.-K. Su M. Mohazzab HJ. Maris (1998) Phys Rev B 57 3000 Occurrence Handle1:CAS:528:DyaK1cXosFKitA%3D%3D

    CAS  Google Scholar 

  10. C.-K. Su CE. Cramer HJ. Maris (1998) J Low Temp Phys. 113 479 Occurrence Handle1:CAS:528:DyaK1cXns1Smtb0%3D

    CAS  Google Scholar 

  11. F. Dalfovo (1992) Phys Rev B 46 5482

    Google Scholar 

  12. HJ. Maris (1994) J Low Temp Phys. 94 125 Occurrence Handle1:CAS:528:DyaK2cXitVSks70%3D

    CAS  Google Scholar 

  13. M. Barranco M. Guilleumas DM. Jezek RJ. Lombard J. Navarro M. Pi (1999) J Low Temp Phys. 117 81 Occurrence Handle10.1023/A:1021813922675 Occurrence Handle1:CAS:528:DyaK1MXms1Ogtbo%3D

    Article  CAS  Google Scholar 

  14. Barranco M., Guilleumas M., Pi M., Jezek DM., in Microscopic Approaches to Quantum Liquids in Confined Geometries, E. Krotscheck and J. Navarro eds. p. 319 World Scientific, Singapore (2002).

  15. Pi M., Barranco M., Mayol R., contribution to the Symposium on Quantum Fluids and Solids, Trento (Italy), July 5–9, 2004. J. of Low Temp. Phys. 138, 463 (2005). Due to an unfortunate mistake in the electron–helium interaction energy, the numerical results presented in this reference are in error.

  16. RA. Ferrel (1957) Phys Rev. 108 167

    Google Scholar 

  17. D. Konstantinov HJ. Maris (2000) J Low Temp Phys. 121 609 Occurrence Handle1:CAS:528:DC%2BD3MXhtlGltr4%3D

    CAS  Google Scholar 

  18. M. Rosenblit J. Jortner (1995) Phys Rev B. 52 17–461

    Google Scholar 

  19. P. Roche G. Deville NJ. Appleyard F.I.B. Williams (1997) J Low Temp Phys. 106 565 Occurrence Handle1:CAS:528:DyaK2sXhs12rsrw%3D

    CAS  Google Scholar 

  20. M. Iino M. Suzuki AJ. Ikushima (1985) J Low Temp Phys. 61 155 Occurrence Handle10.1007/BF00682735 Occurrence Handle1:CAS:528:DyaL2MXmtVWgsb8%3D

    Article  CAS  Google Scholar 

  21. A. Guirao M. Centelles M. Barranco M. Pi A. Polls X. Viñas (1995) J Phys Condens Matter 4 667

    Google Scholar 

  22. HM. Guo D.O. Edwards RE. Sarwinski JT. Tough (1971) Phys Rev Lett. 27 1259 Occurrence Handle1:CAS:528:DyaE38XjslKqtw%3D%3D

    CAS  Google Scholar 

  23. Q. Xiong HJ. Maris (1989) J Low Temp Phys. 77 347 Occurrence Handle10.1007/BF00682750 Occurrence Handle1:CAS:528:DyaK3cXmtlWguw%3D%3D

    Article  CAS  Google Scholar 

  24. J. Boronat J. Casulleras J. Navarro (1994) Phys Rev B 50 3427 Occurrence Handle1:CAS:528:DyaK2cXlvVOltro%3D

    CAS  Google Scholar 

  25. DM. Jezek M. Guilleumas M. Pi Barranco A J. Navarro (1993) Phys Rev B. 48 16–582

    Google Scholar 

  26. Coleman S., Phys. Rev. D 15, 2929 (1977); C. G. Callan and Coleman S., ibid. 16, 1762 (1977).

  27. EM. Chudnovsky (1992) Phys Rev A 46 8011 Occurrence Handle9908154

    PubMed  Google Scholar 

  28. C.-K. Su HJ. Maris (1998) J Low Temp Phys. 110 485 Occurrence Handle1:CAS:528:DyaK1cXmt1WisQ%3D%3D

    CAS  Google Scholar 

  29. F. Caupin S. Balibar (2001) Phys Rev B 64 064507

    Google Scholar 

  30. T. Nakamura Y. Kanno S. Takagi (1995) Phys Rev B 51 8446 Occurrence Handle1:CAS:528:DyaK2MXkvV2ltrY%3D

    CAS  Google Scholar 

  31. DN. Sinha JS. Semura LC. Brodie (1982) Phys Rev A 26 1048 Occurrence Handle1:CAS:528:DyaL38XltFGntbk%3D

    CAS  Google Scholar 

  32. M. Guilleumas M. Barranco DM. Jezek RJ. Lombard M. Pi (1996) Czech J Phys S 46(Suppl 1) 389

    Google Scholar 

  33. E. Tanaka K. Hatakeyama S. Noma SN. Burmistrov T. Satoh (2002) J Low Temp Phys. 127 81 Occurrence Handle1:CAS:528:DC%2BD38XjtlGnu7Y%3D

    CAS  Google Scholar 

  34. DW. Oxtoby (1992) J Phys Condens Matter 4 7627 Occurrence Handle10.1088/0953-8984/4/38/001

    Article  Google Scholar 

  35. F. Ancilotto M. Barranco M. Pi (2003) Phys Rev Lett. 91 105302 Occurrence Handle14525486

    PubMed  Google Scholar 

  36. F. Ancilotto F. Toigo (1994) Phys Rev B. 50 12 820 Occurrence Handle1:CAS:528:DyaK2MXitVymsbc%3D

    CAS  Google Scholar 

  37. J. Dupont-Roc M. Himbert N. Pavloff J. Treiner (1990) J Low Temp Phys. 81 31 Occurrence Handle1:CAS:528:DyaK3cXmtlyju7Y%3D

    CAS  Google Scholar 

  38. NR. Kestner J. Jortner MH. Cohen SA. Rice (1965) Phys Rev. 140 A56

    Google Scholar 

  39. F. Dalfovo (1994) Z Phys D 29 61 Occurrence Handle1:CAS:528:DyaK2cXhsVCltbY%3D

    CAS  Google Scholar 

  40. Sommer WT., Phys. Rev. Lett. 12, 271 (1964); M.A. Woolf and Rayfield GW., ibid. 15, 235 (1965).

  41. HJ. Maris (1995) J Low Temp Phys. 98 403 Occurrence Handle1:CAS:528:DyaK2MXksVCksb4%3D

    CAS  Google Scholar 

  42. Cheng E., Cole MW., Cohen MH., Phys. Rev. B 50, 1136 (1994); Erratum ibid. 50, 16 134 (1994).

    Google Scholar 

  43. Stringari S., Treiner J. J. Chem. Phys. 87, 5021 (1987); Phys. Rev. B 36, 8369 (1987).

    Google Scholar 

  44. WH. Press SA. Teulosky WT. Vetterling BP. Flannery (1999) Numerical Recipes in Fortran 77: The, Art of Scientific Computing Cambridge University Press Cambridge

    Google Scholar 

  45. Bickley WG., Math. Gaz. 25, 19 (1941); M. Abramowitz and Stegun IA., Handbook of Mathematical Functions Dover, New York, (1965).

  46. DM. Jezek M. Guilleumas M. Pi M. Barranco (1997) Phys Rev B 55 11092 Occurrence Handle1:CAS:528:DyaK2sXjtFylsb4%3D

    CAS  Google Scholar 

  47. M. Guilleumas M. Barranco DM. Jezek RJ. Lombard M. Pi (1997) Phys Rev B 55 11092 Occurrence Handle1:CAS:528:DyaK2sXjtFylsb4%3D

    CAS  Google Scholar 

  48. Guilleumas M., Ph. D. Thesis, University of Barcelona (1995), unpublished.

  49. M. Iino M. Suzuki AJ. Ikushima Y. Okuda (1985) J Low Temp Phys. 59 291 Occurrence Handle1:CAS:528:DyaL2MXksVeisrg%3D

    CAS  Google Scholar 

  50. M. Rosenblit J. Jortner (1995) Phys Rev Lett. 75 4079 Occurrence Handle1:CAS:528:DyaK2MXpsFKksL4%3D Occurrence Handle10059809

    CAS  PubMed  Google Scholar 

  51. M. Barranco M. Pi A. Polls X. Viñas (1990) J Low Temp Phys. 80 77 Occurrence Handle1:CAS:528:DyaK3cXltlyksLs%3D

    CAS  Google Scholar 

  52. F. Caupin S. Balibar HJ. Maris (2002) J Low Temp Phys. 126 91 Occurrence Handle10.1023/A:1013718917961 Occurrence Handle1:CAS:528:DC%2BD38XhvF2gsLY%3D

    Article  CAS  Google Scholar 

  53. J. Tempere IF. Silvera JT. Devreese (2003) Phys Rev B 67 035402

    Google Scholar 

  54. J. Classen C.-K. Su M. Mohazzab HJ. Maris (1998) J Low Temp Phys. 110 431 Occurrence Handle1:CAS:528:DyaK1cXmt1Wjtg%3D%3D

    CAS  Google Scholar 

  55. C.C. Grimes G. Adams (1990) Phys Rev B 41 6366 Occurrence Handle1:CAS:528:DyaK3cXit1Grsbk%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pi, M., Barranco, M., Mayol, R. et al. Cavitation of Electron Bubbles in Liquid Helium Below Saturation Pressure. J Low Temp Phys 139, 397–417 (2005). https://doi.org/10.1007/s10909-005-4730-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-4730-5

Keywords

Navigation