Journal of Low Temperature Physics

, Volume 138, Issue 3–4, pp 723–728 | Cite as

Maximal length of trapped one-dimensional Bose-Einstein condensates

  • Uwe R. Fischer
Original Article

No Heading

I discuss a Bogoliubov inequality for obtaining a rigorous bound on the maximal axial extension of inhomogeneous one-dimensional Bose-Einstein condensates. An explicit upper limit for the aspect ratio of a strongly elongated, harmonically trapped Thomas-Fermi condensate is derived.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. P.C. Hohenberg, Phys. Rev. 158, 383 (1967).Google Scholar
  2. 2.
    2. N. N. Bogoliubov, Selected Works, Part II: Quantum and Statistical Mechanics (Gordon and Breach, New York, 1991).Google Scholar
  3. 3.
    3. A. Görlitz et al., Phys. Rev. Lett. 87, 130402 (2001).Google Scholar
  4. 4.
    4. S. Dettmer et al., Phys. Rev. Lett. 87, 160406 (2001).Google Scholar
  5. 5.
    5. H. Ott et al., Phys. Rev. Lett. 87, 230401 (2001).Google Scholar
  6. 6.
    6. D. Hellweg et al., Phys. Rev. Lett. 91, 010406 (2003).Google Scholar
  7. 7.
    7. H. Moritz et al., Phys. Rev. Lett. 91, 250402 (2003).Google Scholar
  8. 8.
    8. T. Stöferle et al., Phys. Rev. Lett. 92, 130403 (2004).Google Scholar
  9. 9.
    9. U. R. Fischer, Phys. Rev. Lett. 89, 280402 (2002).Google Scholar
  10. 10.
    10. W. J. Mullin, J. Low Temp. Phys. 106, 615 (1997).Google Scholar
  11. 11.
    11. E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).Google Scholar
  12. 12.
    12. D. S. Petrov, M. Holzmann and G. V. Shlyapnikov, Phys. Rev. Lett. 84, 2551 (2000); D. S. Petrov, G. V. Shlyapnikov and J. T. M. Walraven, Phys. Rev. Lett. 85, 3745 (2000).Google Scholar
  13. 13.
    13. E. H. Lieb, R. Seiringer and J. Yngvason, Phys. Rev. Lett. 91, 150401 (2003).Google Scholar
  14. 14.
    14. D. Pines and P. Nozières, The Theory of Quantum Liquids: Volume I (W. A. Benjamin, New York, 1966).Google Scholar
  15. 15.
    15. For a particle-number-conserving approach, that is, one which is not breaking the global U(1)-symmetry (to a given order in the quantity f), see Y. Castin and R. Dum, Phys. Rev. A 57, 3008 (1998).Google Scholar
  16. 16.
    16. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).Google Scholar
  17. 17.
    17. E. H. Lieb and R. Seiringer, Phys. Rev. Lett. 88, 170409 (2002).Google Scholar
  18. 18.
    18. A. J. Leggett, New J. Phys. 3, 23.1–23.6 (2001).Google Scholar
  19. 19.
    19. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998); V. Dunjko, V. Lorent and M. Olshanii, Phys. Rev. Lett. 86, 5413 (2001); T. G. Bergeman, M. G. Moore and M. Olshanii, Phys. Rev. Lett. 91, 163201 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Uwe R. Fischer
    • 1
  1. 1.Eberhard-Karls-Universität TübingenInstitut für Theoretische Physik Auf der Morgenstelle 14TübingenGermany

Personalised recommendations