Journal of Low Temperature Physics

, Volume 138, Issue 1–2, pp 73–78 | Cite as

Derivation of Transverse Spin-Wave Dynamics from a Kinetic Equation in a Rotating Reference Frame

  • W. J. Mullin
  • R. J. Ragan
Article

No Heading

In 1997 Fomin challenged the results of several theoretical groups who had predicted that there could be finite damping of spin-waves in the limit T → 0. His method involved deriving a Lagrangian in a reference frame tied to the oscillating magnetization. He claimed to show that there was no diffusive damping (that is, of second order in wave vector q). We reopen this question by examining, under similar conditions, how a kinetic equation behaves in an equivalent reference frame. We arrive at Fomin’s equations modified by inclusion of q2 damping of the spin-wave modes. Our result sharpens and perhaps clarifies the question of the so-called “zero-temperature relaxation.”

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. A. E. Meyerovich and K. A. Musaclian, Jour. Low Temp. Phys., 89, 781 (1992); 94, 249 (1994); 95, 789 (1994).Google Scholar
  2. 2.
    2. W. J. Mullin and J. W. Jeon, Jour. Low Temp. Phys., 88, 433 (1992).Google Scholar
  3. 3.
    3. O. Buu, D. Clubb, R. Nyman, J. R. Owers-Bradley, and R. Konig, Jour. Low Temp. Phys., 128, 123 (2002); O. Bun, D. Clubb, R. Nyman, R. M. Bowley, J. R. Owers-Bradley, and G. Eska, 128, 143 (2002) and earlier references therein.Google Scholar
  4. 4.
    4. D. I. Golosov and A. E. Ruckenstein, Jour. Low Temp. Phys., 112, 265 (1998).Google Scholar
  5. 5.
    5. V. P. Mincev, Phys. Rev. B 69, 1444 (2004); cond-mat/0404539.Google Scholar
  6. 6.
    6. I. A. Fomin, JETP Lett. 65, 749 (1997).Google Scholar
  7. 7.
    7. H. Akimoto, D. Candela, J. S. Xia, W. J. Mullin, E. D. Adams, and N. S. Sullivan, Phys. Rev. Lett. 90, 105301 (2003). This paper has a rather complete list of theoretical and experimental references for homogeneous real-spin Fermi fluids.Google Scholar
  8. 8.
    8. P. S. Kondratenko, JETP 19, 742 (1964); I. E. Dzyaloshinskii and P. S. Kondratenko, JETP 43, 1036 (1976).Google Scholar
  9. 9.
    9. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Addison-Wesley Publishing Co. Redwood City Ca 1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • W. J. Mullin
    • 1
  • R. J. Ragan
    • 2
  1. 1.Physics DepartmentHasbrouck Laboratory University of MassachusettsAmherstUSA
  2. 2.Physics DepartmentUniversity of Wiscosin at LacrosseLa CrosseUSA

Personalised recommendations