Skip to main content
Log in

Adaptive Timing as a Component of a Mosquito-Eating predator’s Specialization Profile

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Evarcha culicivora, a salticid spider from East Africa, is a mosquito specialist which feeds indirectly on vertebrate blood by actively choosing blood-carrying mosquitoes as preferred prey and by actively choosing Anopheles as preferred mosquitoes. Here we investigate for the first time whether specialization by this predator is also expressed in the timing of its predatory activity. With data from field sampling and from systematically observing E. culicivora under semi-field conditions, we show that instances of predation tend to be most common in the early morning hours, this being when especially many night-feeding anthropophilic anopheline mosquitoes are resting while digesting blood acquired during the night. Experimental data show that E. culicivora is significantly more responsive to prey in the morning than in the afternoon, where ‘responsive’ includes being significantly more inclined to eat living prey, choose the preferred prey, approach a source of prey odor in the absence of visible prey and approach lures made from dead prey that can be seen but not touched or smelled. We found no significant diel pattern in E. culicivora’s inclination to mate and, although mate, plant and human odors are all known to be salient to E. culicivora, we found no significant diel pattern in response to any of these odors. Our findings suggest that E. culicivora’s innate pattern of predatory activity is adaptively adjusted in a way that facilitates predation on its preferred prey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baatrup E, Bayley M (1993) Quantitative analysis of spider locomotion employing computer-automated video tracking. Physiol Behav 54:83–90

    Article  CAS  PubMed  Google Scholar 

  • Beadle LC (1981) The inland waters of tropical Africa: an introduction to tropical limnology. Longman, London

    Google Scholar 

  • Carey AF, Wang G, C-Y S, Zwiebel LJ, Carlson JR (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464:66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter GDH (1920) A naturalist on Lake Victoria. Unwin, London

    Google Scholar 

  • Carvell GE, Kuja JO, Jackson RR (2015) Rapid nectar-meal effects on a predator's capacity to kill mosquitoes. R Soc Open Sci 2:140426

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvell GE, Jackson RR, Cross FR (2017) Ontogenetic shift in plant-related cognitive specialization by a mosquito-eating predator. Behav Process 138:105–122

    Article  Google Scholar 

  • Clements AN (1999) The biology of mosquitoes: sensory reception and behaviour, vol 2. CABI Publishing, Oxon

    Google Scholar 

  • Cloudsley-Thompson JL (1978) Biological clocks in Arachnida. Bull Br Arachnol Soc 4:184–191

    Google Scholar 

  • Cross FR, Jackson RR (2009a) Cross-modality priming of visual and olfactory selective attention by a spider that feeds indirectly on vertebrate blood. J Exp Biol 212:1869–1875

    Article  PubMed  Google Scholar 

  • Cross FR, Jackson RR (2009b) Odour-mediated response to plants by Evarcha culicivora, a blood-feeding jumping spider from East Africa. N Z J Zool 36:75–80

    Article  Google Scholar 

  • Cross FR, Jackson RR (2009c) Mate-odour identification by both sexes of Evarcha culicivora, an east African jumping spider. Behav Process 81:74–79

    Article  Google Scholar 

  • Cross FR, Jackson RR (2010a) The attentive spider: search-image use by a mosquito-eating predator. Ethology 116:240–247

    Article  Google Scholar 

  • Cross FR, Jackson RR (2010b) Olfactory search-image use by a mosquito-eating predator. Proc R Soc B 277:3173–3178

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross FR, Jackson RR (2011) Olfaction-based anthropophily in a mosquito-specialist predator. Biol Lett 7:510–512

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross FR, Jackson RR, Pollard SD (2008) Complex display behaviour of Evarcha culicivora, an east African mosquito-eating jumping spider. N Z J Zool 35:151–187

    Article  Google Scholar 

  • Cross FR, Jackson RR, Pollard SD (2009) How blood-derived odor influences mate-choice decisions by a mosquito-eating predator. Proc Natl Acad Sci U S A 106:19416–19419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dippenaar-Schoeman AS, de Jager M, van den Berg A (1996) Behaviour and biology of two species of termite-eating spiders, Ammoxenus amphalodes and A. pentheri (Araneae: Ammoxenidae), in South Africa. Afr Plant Prot 2:15–17

    Google Scholar 

  • Dolev Y, Nelson XJ (2014) Innate pattern recognition and categorization in a jumping spider. PLoS One 9:e97819

    Article  PubMed  PubMed Central  Google Scholar 

  • Dukas R (2004) Causes and consequences of limited attention. Brain Behav Evol 63:197–210

    Article  PubMed  Google Scholar 

  • Eberhard WG (1990) Function and phylogeny of spider webs. Annu Rev Ecol Syst 21:341–372

    Article  Google Scholar 

  • Ferguson HM, Dornhaus A, Beeche A, Borgemeister C, Gottlieb M, Mulla MS, Gimnig JE, Fish D, Killeen GF (2010) Ecology: a prerequisite for malaria elimination and eradication. PLoS Med 7:e1000303

    Article  PubMed  PubMed Central  Google Scholar 

  • Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Forster LM (1982) Non-visual prey-capture in Trite planiceps, a jumping spider (Araneae, Salticidae). J Arachnol 10:179–183

    Google Scholar 

  • Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HCJ, Gould F, Hastings I, Marshall J, Ranson H, Rowland M, Shaman J, Lindsay SW (2013) The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution 67:1218–1230

    Article  PubMed  PubMed Central  Google Scholar 

  • Givens RP (1978) Dimorphic foraging strategies of a salticid spider (Phidippus audax). Ecology 59:309–321

    Article  Google Scholar 

  • Godfray HCJ (2013) Mosquito ecology and control of malaria. J Anim Ecol 82:15–25

    Article  PubMed  Google Scholar 

  • Guseinov EF, Cerveira AM, Jackson RR (2004) The predatory strategy, natural diet, and life cycle of Cyrba algerina, an araneophagic jumping spider (Salticidae: Spartaeinae) from Azerbaijan. N Z J Zool 31:291–303

    Article  Google Scholar 

  • Haddad CR, Brabec M, Pekár S, Fourie R (2016) Seasonal population dynamics of a specialized termite-eating spider (Araneae: Ammoxenidae) and its prey (Isoptera: Hodotermitidae). Pedobiologia 59:105–110

    Article  Google Scholar 

  • Harbach RE (2004) The classification of genus Anopheles (Diptera: Culicidae): a working hypothesis of phylogenetic relatiohships. Bull Entomol Res 94:537–553

    Article  CAS  PubMed  Google Scholar 

  • Harland DP, Jackson RR (2002) Influence of cues from the anterior medial eyes of virtual prey on Portia fimbriata, an araneophagic jumping spider. J Exp Biol 205:1861–1868

    PubMed  Google Scholar 

  • Harland DP, Li D, Jackson RR (2012) How jumping spiders see the world. In: Lazareva O, Shimizu T, Wasserman EA (eds) How animals see the world: comparative behavior, biology, and evolution of vision. Oxford University Press, New York, pp 133–164

    Google Scholar 

  • Huseynov EF, Jackson RR, Cross FR (2008) The meaning of predatory specialization as illustrated by Aelurillus m-nigrum, an ant-eating jumping spider (Araneae: Salticidae) from Azerbaijan. Behav Process 77:389–399

    Article  Google Scholar 

  • Jackson RR (1977) Comparative studies of Dictyna and Mallos (Araneae, Dictynidae): III. Prey and predatory behavior. Psyche 84:267–280

    Article  Google Scholar 

  • Jackson RR (1979) Nests of Phidippus johnsoni (Araneae: Salticidae): characteristics, pattern of occupation, and function. J Arachnol 7:47–58

    Google Scholar 

  • Jackson RR, Cross FR (2011) Spider cognition. Adv Insect Physiol 41:115–174

    Article  Google Scholar 

  • Jackson RR, Cross FR (2015) Mosquito-terminator spiders and the meaning of predatory specialization. J Arachnol 43:123–142

    Article  Google Scholar 

  • Jackson RR, Pollard SD (1996) Predatory behavior of jumping spiders. Annu Rev Entomol 41:287–308

    Article  CAS  PubMed  Google Scholar 

  • Jackson RR, Nelson XJ, Sune GO (2005) A spider that feeds indirectly on vertebrate blood by choosing female mosquitoes as prey. Proc Natl Acad Sci U S A 102:15155–15160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson RR, Deng C, Cross FR (2016) Convergence between a mosquito-eating predator’s natural diet and its prey-choice behaviour. R Soc Open Sci 3:160584

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuja JO, Jackson RR, Sune GO, Karanja RNH, Lagat ZO, Carvell GE (2012) Nectar meals of a mosquito-specialist spider. Psyche 2012:898721

    Google Scholar 

  • Land MF (1969) Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. J Exp Biol 51:471–493

    CAS  PubMed  Google Scholar 

  • Land MF, Nilsson D-E (2012) Animal eyes, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Lubin YD, Henschel JR (1990) Foraging at the thermal limit: burrowing spiders (Seothyra, Eresidae) in the Namib desert dunes. Oecologia 84:461–467

    Article  CAS  PubMed  Google Scholar 

  • Morse DH (1997) Distribution, movement, and activity patterns of an intertidal wolf spider Pardosa lapidicina population (Araneae, Lycosidae). J Arachnol 25:1–10

    Google Scholar 

  • Mukabana WR, Takken W, Coe R, Knols BGJ (2002) Host-specific cues cause differential attractiveness of Kenyan men to the African malaria vector Anopheles gambiae. Malar J 1:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez AD (2012) Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379:413–431

    Article  PubMed  Google Scholar 

  • Nelson XJ, Jackson RR (2006) A predator from East Africa that chooses malaria vectors as preferred prey. PLoS One 1:e132

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson XJ, Jackson RR (2012a) The discerning predator: decision rules underlying prey classification by a mosquito-eating jumping spider. J Exp Biol 215:2255–2261

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson XJ, Jackson RR (2012b) Fine tuning of vision-based prey-choice decisions by a predator that targets malaria vectors. J Arachnol 40:23–33

    Article  Google Scholar 

  • Nelson XJ, Warui CM, Jackson RR (2012a) Widespread reliance on olfactory sex and species identification by lyssomanine and spartaeine jumping spiders. Biol J Linn Soc Lond 107:664–677

    Article  Google Scholar 

  • Nelson XJ, Pratt AJ, Cheseto X, Torto B, Jackson RR (2012b) Mediation of a plant-spider association by specific volatile compounds. J Chem Ecol 38:1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Nentwig W (1987) The prey of spiders. In: Nentwig W (ed) Ecophysiology of spiders. Springer-Verlag, Berlin, pp 249–263

    Chapter  Google Scholar 

  • Nikbakhtzadeh MR, Buss GK, Leal WS (2016) Toxic effect of blood feeding in male mosquitoes. Front Physiol 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Njiru BN, Mukabana WR, Takken W, Knols BGJ (2006) Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Omolo MO, Njiru B, Ndiege IO, Musau RM, Hassanali A (2013) Differential attractiveness of human foot odours to Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) and variation in their chemical composition. Acta Trop 128:144–148

    Article  CAS  PubMed  Google Scholar 

  • Pekár S (2004) Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). J Arachnol 32:31–41

    Article  Google Scholar 

  • Pekár S, Toft S (2015) Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae). Biol Rev Camb Philos Soc 90:744–761

    Article  PubMed  Google Scholar 

  • Pekár S, Král J, Lubin Y (2005) Natural history and karyotype of some ant-eating zodariid spiders (Araneae, Zodariidae) from Israel. J Arachnol 33:50–62

    Article  Google Scholar 

  • Pekár S, Coddington JA, Blackledge TA (2011) Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution 66:776–806

    Article  PubMed  Google Scholar 

  • Pekár S, Michalko R, Korenko S, Šedo O, Líznarová E, Sentenská L, Zdráhal Z (2013) Phenotypic integration in a series of trophic traits: tracing the evolution of myrmecophagy in spiders (Araneae). Zoology 116:27–35

    Article  PubMed  Google Scholar 

  • Penney D, Gabriel R (2009) Feeding behavior of trunk-living jumping spiders (Salticidae) in a coastal primary forest in the Gambia. J Arachnol 37:113–115

    Article  Google Scholar 

  • Ramousse R, Davis F III (1976) Web-building time in a spider: preliminary applications of ultrasonic detection. Physiol Behav 17:997–1000

    Article  CAS  PubMed  Google Scholar 

  • Richman DB, Jackson RR (1992) A review of the ethology of jumping spiders (Araneae, Salticidae). Bull Br Arachnol Soc 9:33–37

    Google Scholar 

  • Riechert SE, Lockley T (1984) Spiders as biological control agents. Annu Rev Entomol 29:299–320

    Article  Google Scholar 

  • Sandoval CP (1994) Plasticity in web design in the spider Parawixia bistriata: a response to variable prey type. Funct Ecol 8:701–707

    Article  Google Scholar 

  • Seyfarth E-A (1980) Daily patterns of locomotor activity in a wandering spider. Physiol Entomol 5:199–206

    Article  Google Scholar 

  • Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel T, Godfray HCJ, Harbach RE, Hay SI (2010) The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit Vectors 3:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Spielman A, D'Antonio M (2001) Mosquito: a natural history of our most persistent and deadly foe. Hyperion, New York

    Google Scholar 

  • Suter RB (1993) Circadian rhythmicity and other patterns of spontaneous motor activity in Frontinella pyramitela (Linyphiidae) and Argyrodes trigonum (Theridiidae). J Arachnol 21:6–22

    Google Scholar 

  • Takken W, Knols BGJ (1999) Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol 44:131–157

    Article  CAS  PubMed  Google Scholar 

  • Taylor PW, Jackson RR, Robertson MW (1998) A case of blind spider's buff?: prey-capture by jumping spiders (Araneae. Salticidae) in the absence of visual cues. J Arachnol 26:369–381

    Google Scholar 

  • Uhl G (2013) Spider olfaction: attracting, detecting, luring and avoiding. In: Nentwig W (ed) Spider ecophysiology. Springer-Verlag, Berlin, pp 141–157

    Chapter  Google Scholar 

  • Wesolowska W, Jackson RR (2003) Evarcha culicivora sp. nov., a mosquito-eating jumping spider from East Africa (Araneae: Salticidae). Ann Zool 53:335–338

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • White GB (1974) Anopheles gambiae Complex and disease transmission in Africa. Trans R Soc Trop Med Hyg 68:278–298

    Article  CAS  PubMed  Google Scholar 

  • Wise DH (1993) Spiders in ecological webs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Witt PN, Reed CF, Peakall DB (1968) A spider's web: problems in regulatory biology. Springer-Verlag, New York

    Book  Google Scholar 

Download references

Acknowledgments

We thank Woody Foster, Maurice Ayawo, David Tom Omondi, Kevin Ochieng, Paul Angina, Godfrey Otieno Sune, Silas Orima and especially Stephen Abok Aluoch for their assistance with laboratory and field work in Kenya. We would especially like to thank the International Centre of Insect Physiology and Ecology (icipe) community, including three successive Director Generals (Hans Herren, Christian Borgeimester and Segenet Kelemu), for the continuing interest and support given to the spider work. All relevant permits were covered by RRJ’s and FRC’s Visiting Scientist contracts with icipe and CD’s student fellowship under icipe’s Dissertation Research Internship Programme. Our research was supported by the Royal Society of New Zealand Marsden Fund (UOC1301), the New Zealand Foundation for Research, Science and Technology (UOCX0903), the National Geographic Society (8676–09), the USA National Institute of Allergy and Infectious Diseases (National Institutes of Health grant no. R01-AI077722), and the China Scholarship Council/University of Canterbury Joint PhD Scholarship Programme.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the research, analyzed the data and prepared the manuscript, and all authors granted final approval for publication.

Corresponding author

Correspondence to Robert R. Jackson.

Ethics declarations

Competing Interests

The authors have no competing or financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Cross, F.R. & Jackson, R.R. Adaptive Timing as a Component of a Mosquito-Eating predator’s Specialization Profile. J Insect Behav 30, 695–716 (2017). https://doi.org/10.1007/s10905-017-9649-6

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-017-9649-6

Keywords

Navigation