Abstract
In katydids (Orthoptera: Tettigonioidea) of the subfamily Phaneropterinae females ready to mate initiate a duet, announcing her position to the male singer, but also potentially to eavesdropping rivals. In many species the male seems to defend the communication by adding self-produced imitations of a female response. If these signals occur within the male sensory time-window after the female song, they can disturb the orientation of rivals. In two species of the genus Gonatoxia, males and females use short, relatively narrow-banded sounds (width 2–7 kHz 10 dB below peak). Male song and female response, however, differ considerably in peak frequency. In G. maculata, the peak frequency of the last part of the male song (13 kHz) is between that of the first part (15 kHz) and the female response (9 kHz), in G. helleri the last part (9 kHz; assumed imitation) and the female song are identical in peak frequency and by a factor two lower than the first part (19 kHz). The male stridulatory file of this species is correspondingly modified and differs from all other members of the genus. The imitation of spectral properties of the female response is not known from any other katydid.
This is a preview of subscription content, access via your institution.







References
Bailey WJ (2003) Insect duets: underlying mechanisms and their evolution. Physiol Entomol 28:157–174. doi:10.1046/j.1365-3032.2003.00337.x
Bennet-Clark HC (1989) Songs and the physics of sound production. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca & London, pp 227–261
Bethoux O (2012) Grylloptera – a unique origin of the stridulatory file in katydids, crickets, and their kin (Archaeorthoptera). Arthropod Syst Phylogeny 70:43–68
Dobler S, Stumpner A, Heller KG (1994) Sex-specific spectral tuning for the partner's song in the duetting bushcricket Ancistrura nigrovittata (Orthoptera: Phaneropteridae). J Comp Physiol A 175:303–310. doi:10.1007/BF00192989
Elsner N, Popov AV (1978) Neuroethology of acoustic communication. Adv Insect Physiol 13:229–355. doi:10.1016/S0065-2806(08)60267-2
Griffin DR (1971) The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim Behav 19:55–61. doi:10.1016/S0003-3472(71)80134-3
Heller KG (1988) Bioakustik der europäischen Laubheuschrecken. Oekologie in Forschung und Anwendung 1. J. Margraf, Weikersheim
Heller KG (1996) Unusual abdomino-alary, defensive stridulatory mechanism in the bushcricket Pantecphylus cerambycinus (Orthoptera, Tettigonioidea, Pseudophyllidae). J Morphol 22:73–86. doi:10.1002/(SICI)1097-4687(199601)227:1<81::AID-JMOR6>3.0.CO;2-S
Heller KG, Korsunovskaya O (2009) Systematics and bioacoustics of the genus Lithodusa (Orthoptera: Tettigoniidae) including the description of a new species from Turkey and comments on the classification of the Drymadusini. J Orthop Res 18:5–13
Heller KG, Schul J, Ingrisch S (1997) Sex-specific differences in song frequency and tuning of the ears in some duetting bushcrickets (Orthoptera: Tettigonioidea: Phaneropteridae). Zoology (Jena) 100:110–118
Heller KG, Hemp C, Ingrisch S, Liu C (2015) Acoustic communication in Phaneropterinae (Tettigonioidea) – a global review with some new data. J Orthop Res 24:7–18. doi:10.1665/034.024.0103
Heller KG, Ingrisch S, Liu C, Shi F, Hemp C, Warchalowska-Sliwa E, Rentz DCF (2017) Complex songs and cryptic ethospecies: the case of the Ducetia japonica group (Orthoptera: Tettigonioidea: Phaneropteridae: Phaneropterinae). Zool J Linn Soc (in press) doi:10.1093/zoolinnean/zlw019
Helversen DV, Schul J, Kleindienst HU (2001) Male recognition mechanism for female responses implies a dilemma for their localisation in a phaneropterine bushcricket. J Comp Physiol A 186:1153–1158. doi:10.1007/s003590000167
Hemp C, Heller KG, Warchałowska-Śliwa E, Hemp A (2016) Spotted males, uniform females and the lowest chromosome number in tettigoniids recorded: review of the genus Gonatoxia Karsch (Orthoptera: Phaneropterinae). Dtsch Entomol Z 63:271–286. doi:10.3897/dez.63.10799
Jost MC, Shaw KL (2006) Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication. Mol Phylogenet Evol 38:510–530. doi:10.1016/j.ympev.2005.10.004
Karsch F (1889) Orthopterologische Beiträge III. Berliner Entomol Z 32(1888):415–464
Kim TW (2009) Taxonomy and acoustic signals of Korean Tettigonioidea (Orthoptera : Ensifera) II. National Institut of Biological Reserves, Incheon
Korsunovskaya OS, Zhantiev RD (1992) Auditory interneurons in the phaneropterid bush-crickets (Orthoptera Phaneropteridae). Entomologicheskoe Obozrenie 71: 721-730 (in Russian; translated in Entomol review 73: 1-10
Lemonnier-Darcemont M, Darcemont C, Heller KG, Dutrillaux AM, Dutrillaux B (2016) Saginae of Europa. Edition GEEM, Callian
Montealegre-Z F (2009) Scale effects and constraints for sound production in katydids (Orthoptera: Tettigoniidae): correlated evolution between morphology and signal parameters. J Evol Biol 22:355–366. doi:10.1111/j.1420-9101.2008.01652.x
Montealegre-Z F, Morris GK, Mason AC (2006) Generation of extreme ultrasonics in rainforest katydids. J Exp Biol 209:4923–4937. doi:10.1242/jeb.02608
Montealegre-Z F, Jonsson T, Robson-Brown KA, Postles M, Robert D (2012) Convergent evolution between insect and mammalian audition. Science 338:968–971. doi:10.1126/science.1225271
Morris GK (2008) Size and carrier in the bog katydid, Metrioptera sphagnorum (Orthoptera: Ensifera, Tettigoniidae). J Orthop Res 17:333–342
Morris GK, Braun H, Wirkner CS (2016) Stridulation of the clear-wing meadow katydid Xiphelimum amplipennis, adaptive bandwidth. Bioacoustics 25:225–251. doi:10.1080/09524622.2016.1138883
Ostrowski TD, Stumpner A (2010) Frequency processing at consecutive levels in the auditory system of bush crickets (Tettigoniidae). J Comp Neurol 518:3101–3116. doi:10.1002/cne.22385
Palghat Udayashankar A, Kössl M, Nowotny M (2012) Tonotopically arranged traveling waves in the miniature hearing organ of bushcrickets. PLoS One 7(2):e31008. doi:10.1371/journal.pone.0031008
Robillard T, Desutter-Grandcolas L (2011) The complex stridulatory behavior of the cricket Eneoptera guyanensis Chopard (Orthoptera: Grylloidea: Eneopterinae). J Insect Physiol 57:694–703. doi:10.1016/j.jinsphys.2011.02.005
Römer H (1987) Representation of auditory distance within a central neuropil of the bushcricket Mygalopsis marki. J Comp Physiol A 161:33–42. doi:10.1007/BF00609453
Scherberich J, Hummel J, Schöneich S, Nowotny M (2016) Auditory fovea in the ear of a duetting katydid shows male-specific adaptation to the female call. Curr Biol 26:R1222–R1223. doi:10.1016/j.cub.2016.10.035
Skejo J, Rebrina F, Tvrtkovi N, Gomboc S, Heller KG.(2015) More than a century old 'Platycleis Kraussi case' finally resolved (Tettigoniidae: Platycleidini). Zootaxa, 3990: 497-524. Doi:10.11646/zootaxa.3990.4.2
Stölting H, Stumpner A (1998) Tonotopic organization of auditory receptors of the bushcricket Pholidoptera griseoaptera (Tettigoniidae, Decticinae). Cell Tissue Res 294:377–386. doi:10.1007/s004410051187
Stumpner A (1997) An auditory interneurone tuned to the male song frequency in the duetting bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae). J Exp Biol 200:1089–1101
Stumpner A (1999) An interneurone of unusual morphology is tuned to the female song frequency in the bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae). J Exp Biol 202:2071–2081
Stumpner A, Molina J (2006) Diversity of intersegmental auditory neurons in a bush cricket. J Comp Physiol A 192:1359–1376. doi:10.1007/s00359-006-0164-z
Villarreal SM, Gilbert C (2014) Male Scudderia pistillata katydids defend their acoustic duet against eavesdroppers. Behav Ecol Sociobiol 68:1669–1675. doi:10.1007/s00265-014-1775-y
Acknowledgements
Our thank goes to Andreas Stumpner for comments on an earlier version of this paper and to two anonymous reviewers for helpful suggestions. Klaus Reinhold helped with statistics. We gratefully acknowledge grants by the Deutsche Forschungsgemeinschaft and the Tanzanian Commission for Science and Technology (COSTECH) as well as the Tanzania Wildlife Research Institute (TAWIRI) for permitting research (research permit No 2016-102-ER-96-44).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they do have no conflict of interest.
Electronic supplementary material
ESM 2
Gonatoxia_maculata.wav. 30-s-section of a duett of Gonatoxia maculata, stereo recording (ca. 20 °C, Mt. Kilimanjaro, male CH8044, female CH806, Gonatoxia_maculata_2015_163 (WAV 7509 kb) (WAV 7509 kb)
ESM 3
Gonatoxia_helleri.wav. 30-s-section of a duett of Gonatoxia helleri, stereo recording (ca. 20 °C, Nilo forest reserve, male CH8134, female CH813, Gonatoxia_helleri_2015_25) (WAV 5633 kb) (WAV 5633 kb)
Rights and permissions
About this article
Cite this article
Heller, KG., Hemp, C. Context Specific Signaling with Different Frequencies - Directed to Different Receivers? A Case Study in Gonatoxia Katydids (Orthoptera, Phaneropteridae). J Insect Behav 30, 420–431 (2017). https://doi.org/10.1007/s10905-017-9628-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10905-017-9628-y