Skip to main content

Context Specific Signaling with Different Frequencies - Directed to Different Receivers? A Case Study in Gonatoxia Katydids (Orthoptera, Phaneropteridae)

Abstract

In katydids (Orthoptera: Tettigonioidea) of the subfamily Phaneropterinae females ready to mate initiate a duet, announcing her position to the male singer, but also potentially to eavesdropping rivals. In many species the male seems to defend the communication by adding self-produced imitations of a female response. If these signals occur within the male sensory time-window after the female song, they can disturb the orientation of rivals. In two species of the genus Gonatoxia, males and females use short, relatively narrow-banded sounds (width 2–7 kHz 10 dB below peak). Male song and female response, however, differ considerably in peak frequency. In G. maculata, the peak frequency of the last part of the male song (13 kHz) is between that of the first part (15 kHz) and the female response (9 kHz), in G. helleri the last part (9 kHz; assumed imitation) and the female song are identical in peak frequency and by a factor two lower than the first part (19 kHz). The male stridulatory file of this species is correspondingly modified and differs from all other members of the genus. The imitation of spectral properties of the female response is not known from any other katydid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Bailey WJ (2003) Insect duets: underlying mechanisms and their evolution. Physiol Entomol 28:157–174. doi:10.1046/j.1365-3032.2003.00337.x

    Article  Google Scholar 

  • Bennet-Clark HC (1989) Songs and the physics of sound production. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca & London, pp 227–261

    Google Scholar 

  • Bethoux O (2012) Grylloptera – a unique origin of the stridulatory file in katydids, crickets, and their kin (Archaeorthoptera). Arthropod Syst Phylogeny 70:43–68

    Google Scholar 

  • Dobler S, Stumpner A, Heller KG (1994) Sex-specific spectral tuning for the partner's song in the duetting bushcricket Ancistrura nigrovittata (Orthoptera: Phaneropteridae). J Comp Physiol A 175:303–310. doi:10.1007/BF00192989

    Google Scholar 

  • Elsner N, Popov AV (1978) Neuroethology of acoustic communication. Adv Insect Physiol 13:229–355. doi:10.1016/S0065-2806(08)60267-2

    Article  Google Scholar 

  • Griffin DR (1971) The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim Behav 19:55–61. doi:10.1016/S0003-3472(71)80134-3

    Article  CAS  PubMed  Google Scholar 

  • Heller KG (1988) Bioakustik der europäischen Laubheuschrecken. Oekologie in Forschung und Anwendung 1. J. Margraf, Weikersheim

  • Heller KG (1996) Unusual abdomino-alary, defensive stridulatory mechanism in the bushcricket Pantecphylus cerambycinus (Orthoptera, Tettigonioidea, Pseudophyllidae). J Morphol 22:73–86. doi:10.1002/(SICI)1097-4687(199601)227:1<81::AID-JMOR6>3.0.CO;2-S

  • Heller KG, Korsunovskaya O (2009) Systematics and bioacoustics of the genus Lithodusa (Orthoptera: Tettigoniidae) including the description of a new species from Turkey and comments on the classification of the Drymadusini. J Orthop Res 18:5–13

    Article  Google Scholar 

  • Heller KG, Schul J, Ingrisch S (1997) Sex-specific differences in song frequency and tuning of the ears in some duetting bushcrickets (Orthoptera: Tettigonioidea: Phaneropteridae). Zoology (Jena) 100:110–118

    Google Scholar 

  • Heller KG, Hemp C, Ingrisch S, Liu C (2015) Acoustic communication in Phaneropterinae (Tettigonioidea) – a global review with some new data. J Orthop Res 24:7–18. doi:10.1665/034.024.0103

    Article  Google Scholar 

  • Heller KG, Ingrisch S, Liu C, Shi F, Hemp C, Warchalowska-Sliwa E, Rentz DCF (2017) Complex songs and cryptic ethospecies: the case of the Ducetia japonica group (Orthoptera: Tettigonioidea: Phaneropteridae: Phaneropterinae). Zool J Linn Soc (in press) doi:10.1093/zoolinnean/zlw019

  • Helversen DV, Schul J, Kleindienst HU (2001) Male recognition mechanism for female responses implies a dilemma for their localisation in a phaneropterine bushcricket. J Comp Physiol A 186:1153–1158. doi:10.1007/s003590000167

    Article  CAS  Google Scholar 

  • Hemp C, Heller KG, Warchałowska-Śliwa E, Hemp A (2016) Spotted males, uniform females and the lowest chromosome number in tettigoniids recorded: review of the genus Gonatoxia Karsch (Orthoptera: Phaneropterinae). Dtsch Entomol Z 63:271–286. doi:10.3897/dez.63.10799

    Article  Google Scholar 

  • Jost MC, Shaw KL (2006) Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication. Mol Phylogenet Evol 38:510–530. doi:10.1016/j.ympev.2005.10.004

    Article  CAS  PubMed  Google Scholar 

  • Karsch F (1889) Orthopterologische Beiträge III. Berliner Entomol Z 32(1888):415–464

    Google Scholar 

  • Kim TW (2009) Taxonomy and acoustic signals of Korean Tettigonioidea (Orthoptera : Ensifera) II. National Institut of Biological Reserves, Incheon

  • Korsunovskaya OS, Zhantiev RD (1992) Auditory interneurons in the phaneropterid bush-crickets (Orthoptera Phaneropteridae). Entomologicheskoe Obozrenie 71: 721-730 (in Russian; translated in Entomol review 73: 1-10

  • Lemonnier-Darcemont M, Darcemont C, Heller KG, Dutrillaux AM, Dutrillaux B (2016) Saginae of Europa. Edition GEEM, Callian

    Google Scholar 

  • Montealegre-Z F (2009) Scale effects and constraints for sound production in katydids (Orthoptera: Tettigoniidae): correlated evolution between morphology and signal parameters. J Evol Biol 22:355–366. doi:10.1111/j.1420-9101.2008.01652.x

    Article  Google Scholar 

  • Montealegre-Z F, Morris GK, Mason AC (2006) Generation of extreme ultrasonics in rainforest katydids. J Exp Biol 209:4923–4937. doi:10.1242/jeb.02608

    Article  PubMed  Google Scholar 

  • Montealegre-Z F, Jonsson T, Robson-Brown KA, Postles M, Robert D (2012) Convergent evolution between insect and mammalian audition. Science 338:968–971. doi:10.1126/science.1225271

    Article  CAS  PubMed  Google Scholar 

  • Morris GK (2008) Size and carrier in the bog katydid, Metrioptera sphagnorum (Orthoptera: Ensifera, Tettigoniidae). J Orthop Res 17:333–342

    Article  Google Scholar 

  • Morris GK, Braun H, Wirkner CS (2016) Stridulation of the clear-wing meadow katydid Xiphelimum amplipennis, adaptive bandwidth. Bioacoustics 25:225–251. doi:10.1080/09524622.2016.1138883

    Article  Google Scholar 

  • Ostrowski TD, Stumpner A (2010) Frequency processing at consecutive levels in the auditory system of bush crickets (Tettigoniidae). J Comp Neurol 518:3101–3116. doi:10.1002/cne.22385

    Article  PubMed  Google Scholar 

  • Palghat Udayashankar A, Kössl M, Nowotny M (2012) Tonotopically arranged traveling waves in the miniature hearing organ of bushcrickets. PLoS One 7(2):e31008. doi:10.1371/journal.pone.0031008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robillard T, Desutter-Grandcolas L (2011) The complex stridulatory behavior of the cricket Eneoptera guyanensis Chopard (Orthoptera: Grylloidea: Eneopterinae). J Insect Physiol 57:694–703. doi:10.1016/j.jinsphys.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  • Römer H (1987) Representation of auditory distance within a central neuropil of the bushcricket Mygalopsis marki. J Comp Physiol A 161:33–42. doi:10.1007/BF00609453

    Article  Google Scholar 

  • Scherberich J, Hummel J, Schöneich S, Nowotny M (2016) Auditory fovea in the ear of a duetting katydid shows male-specific adaptation to the female call. Curr Biol 26:R1222–R1223. doi:10.1016/j.cub.2016.10.035

    Article  CAS  PubMed  Google Scholar 

  • Skejo J, Rebrina F, Tvrtkovi N, Gomboc S, Heller KG.(2015) More than a century old 'Platycleis Kraussi case' finally resolved (Tettigoniidae: Platycleidini). Zootaxa, 3990: 497-524. Doi:10.11646/zootaxa.3990.4.2

  • Stölting H, Stumpner A (1998) Tonotopic organization of auditory receptors of the bushcricket Pholidoptera griseoaptera (Tettigoniidae, Decticinae). Cell Tissue Res 294:377–386. doi:10.1007/s004410051187

    Article  PubMed  Google Scholar 

  • Stumpner A (1997) An auditory interneurone tuned to the male song frequency in the duetting bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae). J Exp Biol 200:1089–1101

    CAS  PubMed  Google Scholar 

  • Stumpner A (1999) An interneurone of unusual morphology is tuned to the female song frequency in the bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae). J Exp Biol 202:2071–2081

    CAS  PubMed  Google Scholar 

  • Stumpner A, Molina J (2006) Diversity of intersegmental auditory neurons in a bush cricket. J Comp Physiol A 192:1359–1376. doi:10.1007/s00359-006-0164-z

    Article  Google Scholar 

  • Villarreal SM, Gilbert C (2014) Male Scudderia pistillata katydids defend their acoustic duet against eavesdroppers. Behav Ecol Sociobiol 68:1669–1675. doi:10.1007/s00265-014-1775-y

    Article  Google Scholar 

Download references

Acknowledgements

Our thank goes to Andreas Stumpner for comments on an earlier version of this paper and to two anonymous reviewers for helpful suggestions. Klaus Reinhold helped with statistics. We gratefully acknowledge grants by the Deutsche Forschungsgemeinschaft and the Tanzanian Commission for Science and Technology (COSTECH) as well as the Tanzania Wildlife Research Institute (TAWIRI) for permitting research (research permit No 2016-102-ER-96-44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Gerhard Heller.

Ethics declarations

Conflict of Interest

The authors declare that they do have no conflict of interest.

Electronic supplementary material

ESM 1

ANOVA data to Table 1. (PDF 55 kb) (PDF 55 kb)

ESM 2

Gonatoxia_maculata.wav. 30-s-section of a duett of Gonatoxia maculata, stereo recording (ca. 20 °C, Mt. Kilimanjaro, male CH8044, female CH806, Gonatoxia_maculata_2015_163 (WAV 7509 kb) (WAV 7509 kb)

ESM 3

Gonatoxia_helleri.wav. 30-s-section of a duett of Gonatoxia helleri, stereo recording (ca. 20 °C, Nilo forest reserve, male CH8134, female CH813, Gonatoxia_helleri_2015_25) (WAV 5633 kb) (WAV 5633 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heller, KG., Hemp, C. Context Specific Signaling with Different Frequencies - Directed to Different Receivers? A Case Study in Gonatoxia Katydids (Orthoptera, Phaneropteridae). J Insect Behav 30, 420–431 (2017). https://doi.org/10.1007/s10905-017-9628-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-017-9628-y

Keywords