Journal of Insect Behavior

, Volume 30, Issue 4, pp 409–419 | Cite as

Size Matters – Correlation of Body Size, Structure of Sternal Glands and Mating Success in Echinothrips Americanus (Thysanoptera: Thripidae)

  • Stephanie Krueger
  • Marcus Jilge
  • Laurence Mound
  • Gerald B. Moritz


Females of many insect species analyse and select specific male signals for possible mates. Mate choice can benefit fecundity and survival of females, or have an indirect effect by providing optimal genes. Assortative mating by size is one of the most commonly observed sexual behaviors. Additionally, chemical cues may be detected by females, as these can also be indicators of body size and condition. Little is known about mate choice behavior among Thysanoptera. The mating system of Echinothrips americanus (Thysanoptera, Thripidae) is characterized by a strong competition for mates, leading to assortative mating. In this species very prominent gland structures are located on sternites III to VIII, of which the function still remains unknown. However, given the individual differences in expression of the gland release areas, a probable role in mate selection is postulated. In this study, we are interested in possible correlations between male body size, gland release areas, glandular substances, and mating success. Additionally, we used an experimental approach to test for a possible function in mate-assessment, or as an anti-aphrodisiac. Whereas pronotum length, distance between 1st and 2nd coxa, as well as total sternite area show a significant correlation with mating success, no direct correlation with sternal gland structures was observed. Furthermore, we failed to constitute a mate-assessment or anti-aphrodisiac-like function of sternal gland products.


Pheromone anti-aphrodisiac mate choice assortative mating body size 



We would like to thank candidate B.Sc. Christin Hesse for assistance and technical support.

Supplementary material

10905_2017_9627_MOESM1_ESM.docx (33 kb)
ESM 1 (DOCX 32.9 kb)


  1. Akella SVS, Kirk WDJ, Lu YB, Murai T, Walters KFA, Hamilton JGC, Renou M (2014) Identification of the aggregation pheromone of the melon thrips, Thrips palmi. PLoS One 9:e103315. doi: 10.1371/journal.pone.0103315 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Resistance Database Archives (2017) IRAC- Insecticide Resistance Action Committee Accessed 18 Jan 2017
  3. Plant Health Australia (2010) Poinsettia thrips contingency plan Accessed 16 Dec 2016
  4. Baker RR (1983) Insect territoriality. Annu Rev Entomol 28:65–89CrossRefGoogle Scholar
  5. Banshiddhi K, Poonchaisri S (1991) Thrips in vegetables and other commercially important crops in Thailand. In: Talekar NS (ed) Thrips in South East Asia. AVRDC Publications, Bangkok, pp 34–39Google Scholar
  6. Bernardo EN (1991) Thrips on vegetable crops in the Philippines. In: Talekar NS (ed) Thrips in South East Asia. AVRDC Publications, Bangkok, pp 5–11Google Scholar
  7. Blows MW, Chenoweth SF, Hine E (2004) Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually selected traits. Amer Nat 163:329–340. doi: 10.1086/381941 CrossRefGoogle Scholar
  8. Bode W (1978) Ultrastructure of the sternal glands in Thrips validus Uzel (Thysanoptera, Terebrantia). Zoomorphologie 90:53–65. doi: 10.1007/BF00993743 CrossRefGoogle Scholar
  9. Bradbury JW, Vehrencamp SL (2011) Principals of animal communication, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  10. Clark DC, DeBano SJ, Moore AJ (1997) The influence of environmental quality on sexual selection in Nauphoeta cinerea (Dictyoptera: Blaberidae). Behav Ecol 8:46–53. doi: 10.1093/beheco/8.1.46 CrossRefGoogle Scholar
  11. Cloyd RA (2016) Western flower Thrips (Thysanoptera: Thripidae) and Insecticide resistance: an overview and strategies to mitigate Insecticide resistance development. J Entomol Sci 51:257–273. doi: 10.18474/JES16-15.1 CrossRefGoogle Scholar
  12. Conner WE, Roach B, Benedict E, Meinwald J, Eisner T (1990) Courtship pheromone production and body size as correlates of larval diet in males of the arctiid moth, Utetheisa-ornatrix. J Chem Ecol 16:543–552. doi: 10.1007/BF01021785 CrossRefPubMedGoogle Scholar
  13. Crespi BJ (1989) Causes of assortative mating in arthropods. Anim Behav 38:980–1000. doi: 10.1016/S0003-3472(89)80138-1 CrossRefGoogle Scholar
  14. Crespi BJ, Morris DC, Mound LA (2004) Evolution of ecological and behavioural diversity: Australians acacia Thrips as model organisms. Australian Biological Resources Study and Australian National Insect Collection, CanberraGoogle Scholar
  15. De Kogel WJ, van Deventer P (2003) Intraspecific attraction in the western flower thrips Frankliniella occidentalis, indications for a male sex pheromone. Entomol Exp Appl 107:87–89. doi: 10.1046/j.1570-7458.2003.00031.x CrossRefGoogle Scholar
  16. Fisher R (1915) The evolution of sexual preferences. Eugen Rev 7:184–192PubMedPubMedCentralGoogle Scholar
  17. Fisher R (1930) The Genetical theory of natural selection. Clarendon Press, OxfordCrossRefGoogle Scholar
  18. Gitaitis RD, Walcott RR, Wells ML, Diaz Perez JC, Sanders FH (2003) Transmissions of Pantoea ananatis, causal agent of center rot of onion, by tobacco thrips, Frankliniella fusca. Plant Dis 87:675–678CrossRefGoogle Scholar
  19. Hamilton JGC, Hall DR, Kirk WDJ (2005) Identification of a male-produced aggregation pheromone in the western flower thrips Frankliniella occidentalis. J Chem Ecol 31:1369–1379. doi: 10.1007/s10886-005-1351-z CrossRefPubMedGoogle Scholar
  20. Heming B (1995) History of the germ line in male and female Thrips. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum Press, New York, pp 505–535CrossRefGoogle Scholar
  21. Hoddle MS, Mound LA, Paris DL (2008) Thrips of California. CD-ROM published by CBIT Publishing, Queensland Google Scholar
  22. Johansson BG, Jones TM (2007) The role of chemical communication in mate choice. Biol Rev 82:265–289. doi: 10.1111/j.1469-185X.2007.00009.x CrossRefPubMedGoogle Scholar
  23. Jones DR (2005) Plant viruses transmitted by thrips. Eur J Plant Pathol 113:119–157. doi: 10.1007/s10658-005-2334-1 CrossRefGoogle Scholar
  24. Joosse S (2012) Fisher’s exact test Accessed Oct 2015
  25. Kirk WDJ, Hamilton JGC (2010) The aggregation pheromones in thrips. In: Persley D, Wilson C, Thomas J, Sharman M, Tree D (ed) IXth international symposium on Thysanoptera and Tospoviruses. J insect Sci 10, p 166Google Scholar
  26. Klocke F (1926) Beiträge zur Anatomie und Histologie der Thysanopteren. Z wiss Zool, Abt A 128:1–36Google Scholar
  27. Krueger S, Subramanian S, Niassy S, Moritz GB (2015) Sternal gland structures in males of bean flower thrips, Megalurothrips sjostedti, and poinsettia thrips, Echinothrips americanus, in comparison with those of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Arth Struct & Dev 44:455–467. doi: 10.1016/j.asd.2015.07.002 CrossRefGoogle Scholar
  28. Krueger S, Moritz G, Lindemann P, Radisch D, Tschuch G (2016a) Male pheromone influence the mating behavior of Echinothrips americanus. J Chem Ecol. doi: 10.1007/s10886-016-0685-z
  29. Krueger S, Mound LA, Moritz GB (2016b) Offspring sex ratio and development are determined by copulation activity in Echinothrips americanus MORGAN 1913 (Thysanoptera). J Appl Entomol 140:462–473. doi: 10.1111/jen.12280 CrossRefGoogle Scholar
  30. Krueger S, Jilge M, Mound LA, Moritz GB (2017) Reproductive behaviour of Echinothrips americanus (Thysanoptera: Thripidae). J Insect Sci 17(2):66CrossRefPubMedCentralGoogle Scholar
  31. Kuijper B, Pen I, Weissing FJ (2012) A guide to sexual selection theory. Annu Rev Ecol Evol Syst 43:287–311. doi: 10.1146/annurev-ecolsys-110411-160245 CrossRefGoogle Scholar
  32. Kumm S (2002) Reproduction, progenesis and embryogenesis of thrips (Thysanoptera, Insecta). Dissertation. Martin-Luther-University Halle-Wittenberg, GermanyGoogle Scholar
  33. Lewis T (1997) Chemical control. In: Lewis T (ed) Thrips as crop pests. CAB International, Oxon, pp 567–593Google Scholar
  34. Li X-W, Zhang X-C, Jiang H-X, Feng J-N (2012) Comparisons of developmental and reproductive biology between parthenogenetic and sexual Echinothrips americanus (Thysanoptera: Thripidae). Environ Entomol 41:706–713. doi: 10.1603/EN11325 CrossRefPubMedGoogle Scholar
  35. Li X-W, Jiang H-X, Zhang X-C, Shelton AM, Feng J-N (2014) Post-mating interactions and their effects on fitness of female and male Echinothrips americanus (Thysanoptera: Thripidae), a new insect pest in China. PLoS One 9:1–7. doi: 10.1371/journal.pone.0087725 Google Scholar
  36. Moritz GB (2006) Thripse - Fransenflügler, Thysanoptera. Westarp-Verlag, HohenwarslebenGoogle Scholar
  37. Moritz GB (2011) Thysanoptera – Fransenflügler (Thripse). In: Klausnitzer B (ed) Stresemann Exkursionsfauna von Deutschland, Band 2, Wirbellose: Insekten. Springer Spektrum Akademischer Verlag, Heidelberg, pp 164–171CrossRefGoogle Scholar
  38. Moritz GB, Mound LA, Morris D, Goldarazena A (2004) Pest thrips of the world - an identification and information system using molecular and microscopial methods. Centre for Biological Information Technology, University of Queensland, Australia CD-ROM ISBN 1 86499 781 8. Google Scholar
  39. Mound LA (1971) Gall-forming thrips and allied species (Thysanoptera: Phlaeothripinae) from acacia trees in Australia. Bull Br Mus Nat Hist 25:387–466. doi: 10.5962/bhl.part.19680 Google Scholar
  40. Mound LA (1997) Biological Diversity. In: Lewis T (ed.) Thrips as crop pests. CAB International, Oxon, pp 197–215Google Scholar
  41. Mound LA (2001) So many thrips-so few tospoviruses? In: Marullo R, Mound LA (eds) Thrips and Tospoviruses: proceedings of the 7th international symposium on Thysanoptera. Australian National Insect Collection, Canberra, pp 15–18Google Scholar
  42. Mound LA (2009) Sternal pore plates (glandular areas) of male Thripidae (Thysanoptera). Zootaxa 2129:29–46. doi: 10.5281/zenodo.188316 Google Scholar
  43. Oetting RD, Beshear RJ (1993) Biology of the greenhouse pest Echinothrips americanus Morgan (Thysanoptera: Thripidae). Int J Pure Appl Zool 4:307–315Google Scholar
  44. Oetting RD, Beshear RJ, Liu TX, Braman SK, Baker JR (1993) Biology and identification of thrips on greenhouse ornamentals. Geo Agr Exp St Bull 414:20Google Scholar
  45. Olaniran OA, Sudhakar AVS, Drijfhout FP, Dublon IAN, Hall DR, Hamilton JGC, Kirk WDJ (2013) A male-predominant cuticular hydrocarbon, 7-methyltricosane, is used as a contact pheromone in the western flower thrips Frankliniella occidentalis. J Chem Ecol 39:559–568. doi: 10.1007/s10886-013-0272-5 CrossRefPubMedGoogle Scholar
  46. Pelikan J (1951) On carnation thrips, Taeniothrips dianthi Priesner. Folia Entomol 14:5–38Google Scholar
  47. Sastrosiswojo S (1991) Thrips in vegetables in Indonesia. In: Talekar NS (ed) Thrips in South East Asia. AVRDC Publications, Bangkok, pp 12–17Google Scholar
  48. Shuker DM, Simmons LW (2014) The evolution of insect mating systems. Oxford University Press, OxfordCrossRefGoogle Scholar
  49. Stahr C, Svatos A, Seidelmann K (2013) Chemical identification, emission pattern and function of male-specific pheromones released by a rarely swarming locust, Schistocerca americana. J Chem Ecol 39:15–27. doi: 10.1007/s10886-012-0233-4 CrossRefPubMedGoogle Scholar
  50. Stannard LJ (1968) The Thrips, or Thysanoptera, of Illinois. Bull. Ill Nat Hist Surv 29:214–552Google Scholar
  51. Terry IL, Dyreson E (1996) Behavior of Frankliniella occidentalis (Thysanoptera: Thripidae) within aggregations, and morphometric correlates of fighting. Ann Entomol Soc Am 89:589–602CrossRefGoogle Scholar
  52. Terry IL, Schneider M (1993) Copulatory behaviour and mating frequency of the western flower thrips, Frankliniella occidentalis (Insecta: Thysanoptera). IJPAZ 4:339–354Google Scholar
  53. Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, CambridgeCrossRefGoogle Scholar
  54. ThripsWiki (2017) ThripsWiki - providing information on the World's thrips Accessed 17 Jan 2017
  55. Trdan S, Milevoj L, Raspudic E, Zezlina I (2003) The first record of Echinothrips americanus Morgan in Slovenia. Acta Phytopathol Hun 38:157–166. doi: 10.1556/APhyt.38.2003.1-2.18 CrossRefGoogle Scholar
  56. Ullman D, Sherwood JL, German TL (1997) Thrips as vectors of plant pathogens. In: Lewis T (ed) Thrips as crop pests. CAB International, Oxon, pp 539–565Google Scholar
  57. Vierbergen G (1998) Echinothrips americanus Morgan, a new thrips in Dutch greenhouses (Thysanoptera: Thripidae). Proc Exp Appl Entomol 9:155–160Google Scholar
  58. Zhang P-J, Zhu X-Y, Lu Y-B (2011) Behavioural and chemical evidence of a male-produced aggregation pheromone in the flower thrips Frankliniella intonsa. Physiol Entomol 36:317–320. doi: 10.1111/j.1365-3032.2011.00796.x CrossRefGoogle Scholar
  59. Zhu L, Shi B-C, Gong Y-J, Wang Z-H, Kang Z-J, Mirab-balou M (2013) Host preference of Echinothrips americanus Morgan for different vegetables. Acta Ecol Sin 33:1607–1614. doi: 10.5846/stxb201210151433 CrossRefGoogle Scholar
  60. zur Strassen R (2003) Die terebranten Thysanopteren Europas und des Mittelmeer-Gebietes. Die Tierwelt Deutschlands, Goecke & Evers, Keltern 74:1–271Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Stephanie Krueger
    • 1
  • Marcus Jilge
    • 1
  • Laurence Mound
    • 2
  • Gerald B. Moritz
    • 1
  1. 1.Faculty Natural Sciences I, Institute of BiologyMartin Luther University Halle- WittenbergHalle (Saale)Germany
  2. 2.CSIRO, Australian National Insect CollectionCanberraAustralia

Personalised recommendations