Skip to main content
Log in

How Mosquito Age and the Type and Color of Oviposition Sites Modify Skip-Oviposition Behavior in Aedes aegypti (Diptera: Culicidae)?

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

To address how physiological age, container type and the number of substrates affect Aedes aegypti skip-oviposition behavior, we examined egg distribution by individual females across consecutive gonotrophic cycles. We found no support for the effect of age on egg distribution. However, the hypothesis that both the variety and color of the container would influence skip-oviposition behavior was confirmed. Skip-oviposition behavior remained unchanged throughout the female’s life. The egg distribution pattern was characterized by a significantly higher oviposition rate in one site, with residual eggs distributed in groups of 1–30 eggs. Regardless type, most eggs were registered in dark containers. These data suggest that females contribute equally to population dynamics throughout their lifespan and illustrates the impact of color on egg dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apostol BL et al (1994) Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. AmJTrop Med Hyg 51(1):89–97

    CAS  Google Scholar 

  • Arunachalam N et al (2010) Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bull World Health Organ 88(3):173–184

    Article  PubMed Central  PubMed  Google Scholar 

  • Ayres M et al (2007) BioEstat 5.0—aplicações estatísticas nas áreas das ciências biológicas e médicas, computer program, version 5.0. Sociedade Civil Mamirauá, Belém

    Google Scholar 

  • Barbosa RMR et al (2010) Evaluation of an oviposition-stimulating kairomone for the yellow fever mosquito, Aedes aegypti, in Recife, Brazil. J Vect Ecol 35(1):204–207

    Article  Google Scholar 

  • Beckel WE (1955) Oviposition site preference of Aedes mosquitoes (Culicidae) in the laboratory. Mosq News 15:224–228

    Google Scholar 

  • Briegel H et al (2002) Lipid metabolism during sequential gonotrophic cycles in large and small female Aedes aegypti. J Insect Physiol 48(5):547–554

    Article  CAS  PubMed  Google Scholar 

  • Carneiro EWB et al (2000) Prevalência da infestação de diferentes tipos de depósitos pelo Aedes aegypti na cidade de Fortaleza. Rev Soc Bras Med Trop 33(1):407

    Google Scholar 

  • Carpenter MJ, Nielsen LT (1965) Ovarian cycles and longevity in some univoltine Aedes species in the rocky mountains of western United States. Mosq News 25(2):127–134

    Google Scholar 

  • Carvalho-Leandro D et al (2010) Temporal distribution of Aedes aegypti Linnaeus (Diptera, Culicidae), in a Hospital in Cuiabá, State of Mato Grosso, Brazil. Rev Bras Entomol 54:701–706

    Article  Google Scholar 

  • Chadee DD (2009) Oviposition strategies adopted by gravid Aedes aegypti (L.) (Diptera: Culicidae) as detected by ovitraps in Trinidad, West Indies (2002–2006). Acta Trop 111(3):279–283

    Article  CAS  PubMed  Google Scholar 

  • Chadee DD et al (1993) Oviposition response of Aedes aegypti mosquitoes to different concentrations of hay infusion in Trinidad. West Indies J Am Mosq Control Assoc 9(3):346–348

    CAS  Google Scholar 

  • Chadee DD et al (1995) Proportions of eggs laid by Aedes aegypti on different substrates within an ovitrap in Trinidad, West Indies. Med Vet Entomol 9(1):66–70

    Article  CAS  PubMed  Google Scholar 

  • Chadee DD et al (1998) Natural habitats of Aedes Aegypti in the Caribbean-a review. J Am Mosq Control Assoc 14(1):5–11

    CAS  PubMed  Google Scholar 

  • Chadee DD et al (2002) Fast and slow blood-feeding durations of Aedes aegypti mosquitoes in Trinidad. J Vect Ecol 27(2):172–177

    Google Scholar 

  • Chadee DD et al (2009) Aedes aegypti in Jamaica, West Indies: container productivity profiles to inform control strategies. Trop Med Int Health 14(2):220–227

    Article  CAS  PubMed  Google Scholar 

  • Colton YM et al (2003) Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med Vet Entomol 17(2):195–204

    Article  CAS  PubMed  Google Scholar 

  • Corbet PS, Chadee DD (1993) An improved method for detecting substrate preferences shown by mosquitoes that exhibit ‘skip oviposition’. Physiol Entomol 18(2):114–118

    Article  Google Scholar 

  • Costa EAPA et al (2010) Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev Bras Entomol 54:488–493

    Article  Google Scholar 

  • Fay RW, Perry AS (1965) Laboratory studies of oviposition preference of Aedes aegypti. Mosq News 25:276–281

    Google Scholar 

  • Ganesan K et al (2006) Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Aust J Entomol 45(1):75–80

    Article  Google Scholar 

  • Gubler DJ, Bhattacharya NC (1971) Observations on reproductive history of Aedes (Stegomyia) albopictus in laboratory. Mosq News 31(3):356–359

    Google Scholar 

  • Guzman A, Isturiz RE (2010) Update on the global spread of dengue. Int J Antimicrob Ag 36(1):S40–S42

    Article  CAS  Google Scholar 

  • Harrington LC, Edman JD (2001) Indirect evidence against delayed “skip-oviposition” behavior by Aedes aegypti (Diptera : Culicidae) in Thailand. J Med Entomol 38(5):641–645

    Article  CAS  PubMed  Google Scholar 

  • Harrington LC et al (2008) Influence of container size, location, and time of day on oviposition patterns of the dengue vector, Aedes aegypti, in Thailand. Vector Borne Zoonotic Dis 8(3):415–423

    Article  CAS  PubMed  Google Scholar 

  • Lima MM et al (1988) Criadouros de Aedes aegypti encontrados em alguns bairros da cidade do Rio de Janeiro, RJ, Brasil, em 1984–85. Cad Saúde Pública 4:293–300

    Article  Google Scholar 

  • Martins VEP et al (2010) Distribuição espacial e características dos criadouros de Aedes albopictus e Aedes aegypti em Fortaleza, Estado do Ceará. Rev Soc Bras Med Trop 43:73–77

    Article  PubMed  Google Scholar 

  • Mogi M, Mokry J (1980) Distribution of Wyeomyia smithii (Diptera: Culicidae) eggs in pitcher plants in Newfoundland, Canada. Trop Med 22:1–12

    Google Scholar 

  • Muir LE et al (1992) Aedes aegypti (Diptera: Culicidae) vision: response to stimuli from the optical environment. J Med Entomol 29(3):445–450

    CAS  PubMed  Google Scholar 

  • Nyamah MA et al (2010) Categorization of potential breeding sites of dengue vectors in Johor, Malaysia. Trop Biomed 27(1):33–40

    CAS  PubMed  Google Scholar 

  • Pan American Health Organization (1994) Dengue and dengue hemorrhagic fever in the Americas: guidelines for prevention and control. PAHO/WHO

  • Pinheiro VC, Tadei WP (2002) Frequency, diversity, and productivity study on the Aedes aegypti most preferred containers in the city of Manaus, Amazonas, Brazil. Rev Inst Med Trop São Paulo 44(5):245–250

    Article  PubMed  Google Scholar 

  • Ponnusamy L et al (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc Nat Acad Sci 105(27):9262–9267

    Article  CAS  PubMed  Google Scholar 

  • Regis L et al (2008) Developing new approaches for detecting and preventing Aedes aegypti population outbreaks: basis for surveillance, alert and control system. Mem Inst Oswaldo Cruz 103:50–59

    Article  PubMed  Google Scholar 

  • Reiter P (1996) Oviposition and dispersion of Aedes aegypti in an urban environment. Bull Soc Pathol Exot 89(2):120–122

    CAS  PubMed  Google Scholar 

  • Reiter P (2007) Oviposition, dispersal, and survival in Aedes aegypti: implications for the efficacy of control strategies. Vector Borne Zoonotic Dis 7(2):261–273

    Article  PubMed  Google Scholar 

  • Reiter P et al (1991) Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. J Am Mosq Control Assoc 7(1):52–55

    CAS  PubMed  Google Scholar 

  • Saifur RG et al (2012) Changing domesticity of Aedes aegypti in northern peninsular Malaysia: reproductive consequences and potential epidemiological implications. PLoS One 7(2):e30919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silva VC et al (2006) Diversidade de criadouros e tipos de imóveis freqüentados por Aedes albopictus e Aedes aegypti. Rev Saúde Públ 40:1106–1111

    Article  Google Scholar 

  • Suleman M (1990) Intraspecific variation in the reproductive capacity of Anopheles stephensi (Diptera: Culicidae). J Med Entomol 27(5):819–828

    CAS  PubMed  Google Scholar 

  • Vasconcelos PFC (2003) Febre amarela. Rev Soc Bras Med Trop 36:275–293

    Article  PubMed  Google Scholar 

  • Vezzani D (2007) Review: artificial container-breeding mosquitoes and cemeteries: a perfect match. Trop Med Int Health 12(2):299–313

    Article  PubMed  Google Scholar 

  • Wong J et al (2011) Oviposition site selection by the dengue vector Aedes aegypti and its implicationsfor dengue control. PLoS Negl Trop Dis 5(4):e1015

    Article  PubMed Central  PubMed  Google Scholar 

  • World Health Organization (2009) Dengue: guidelines for diagnosis, treatment, prevention and control. WHO

  • Zahiri N, Rau ME (1998) Oviposition attraction and repellency of Aedes aegypti (Diptera: Culicidae) to waters from conspecific larvae subjected to crowding, confinement, starvation, or infection. J Med Entomol 35(5):782–787

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Marcos Nigro and Marcelo Oliva for laboratory assistance and to Dr. Paulo Santos for statistical advice. We also appreciate the reviewers’ constructive comments, which served to improve this paper. We are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível superior (CAPES) for a scholarship provided to one of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Oliva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliva, L.O., Correia, J.C. & Albuquerque, C.M.R. How Mosquito Age and the Type and Color of Oviposition Sites Modify Skip-Oviposition Behavior in Aedes aegypti (Diptera: Culicidae)?. J Insect Behav 27, 81–91 (2014). https://doi.org/10.1007/s10905-013-9407-3

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-013-9407-3

Keywords

Navigation