Journal of Insect Behavior

, Volume 27, Issue 1, pp 81–91 | Cite as

How Mosquito Age and the Type and Color of Oviposition Sites Modify Skip-Oviposition Behavior in Aedes aegypti (Diptera: Culicidae)?

  • L. O. Oliva
  • J. C. Correia
  • C. M. R. Albuquerque


To address how physiological age, container type and the number of substrates affect Aedes aegypti skip-oviposition behavior, we examined egg distribution by individual females across consecutive gonotrophic cycles. We found no support for the effect of age on egg distribution. However, the hypothesis that both the variety and color of the container would influence skip-oviposition behavior was confirmed. Skip-oviposition behavior remained unchanged throughout the female’s life. The egg distribution pattern was characterized by a significantly higher oviposition rate in one site, with residual eggs distributed in groups of 1–30 eggs. Regardless type, most eggs were registered in dark containers. These data suggest that females contribute equally to population dynamics throughout their lifespan and illustrates the impact of color on egg dispersion.


Oviposition behavior oviposition rate physiological age population density dengue 



We are thankful to Marcos Nigro and Marcelo Oliva for laboratory assistance and to Dr. Paulo Santos for statistical advice. We also appreciate the reviewers’ constructive comments, which served to improve this paper. We are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível superior (CAPES) for a scholarship provided to one of the authors.


  1. Apostol BL et al (1994) Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. AmJTrop Med Hyg 51(1):89–97Google Scholar
  2. Arunachalam N et al (2010) Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bull World Health Organ 88(3):173–184PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ayres M et al (2007) BioEstat 5.0—aplicações estatísticas nas áreas das ciências biológicas e médicas, computer program, version 5.0. Sociedade Civil Mamirauá, BelémGoogle Scholar
  4. Barbosa RMR et al (2010) Evaluation of an oviposition-stimulating kairomone for the yellow fever mosquito, Aedes aegypti, in Recife, Brazil. J Vect Ecol 35(1):204–207CrossRefGoogle Scholar
  5. Beckel WE (1955) Oviposition site preference of Aedes mosquitoes (Culicidae) in the laboratory. Mosq News 15:224–228Google Scholar
  6. Briegel H et al (2002) Lipid metabolism during sequential gonotrophic cycles in large and small female Aedes aegypti. J Insect Physiol 48(5):547–554PubMedCrossRefGoogle Scholar
  7. Carneiro EWB et al (2000) Prevalência da infestação de diferentes tipos de depósitos pelo Aedes aegypti na cidade de Fortaleza. Rev Soc Bras Med Trop 33(1):407Google Scholar
  8. Carpenter MJ, Nielsen LT (1965) Ovarian cycles and longevity in some univoltine Aedes species in the rocky mountains of western United States. Mosq News 25(2):127–134Google Scholar
  9. Carvalho-Leandro D et al (2010) Temporal distribution of Aedes aegypti Linnaeus (Diptera, Culicidae), in a Hospital in Cuiabá, State of Mato Grosso, Brazil. Rev Bras Entomol 54:701–706CrossRefGoogle Scholar
  10. Chadee DD (2009) Oviposition strategies adopted by gravid Aedes aegypti (L.) (Diptera: Culicidae) as detected by ovitraps in Trinidad, West Indies (2002–2006). Acta Trop 111(3):279–283PubMedCrossRefGoogle Scholar
  11. Chadee DD et al (1993) Oviposition response of Aedes aegypti mosquitoes to different concentrations of hay infusion in Trinidad. West Indies J Am Mosq Control Assoc 9(3):346–348Google Scholar
  12. Chadee DD et al (1995) Proportions of eggs laid by Aedes aegypti on different substrates within an ovitrap in Trinidad, West Indies. Med Vet Entomol 9(1):66–70PubMedCrossRefGoogle Scholar
  13. Chadee DD et al (1998) Natural habitats of Aedes Aegypti in the Caribbean-a review. J Am Mosq Control Assoc 14(1):5–11PubMedGoogle Scholar
  14. Chadee DD et al (2002) Fast and slow blood-feeding durations of Aedes aegypti mosquitoes in Trinidad. J Vect Ecol 27(2):172–177Google Scholar
  15. Chadee DD et al (2009) Aedes aegypti in Jamaica, West Indies: container productivity profiles to inform control strategies. Trop Med Int Health 14(2):220–227PubMedCrossRefGoogle Scholar
  16. Colton YM et al (2003) Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med Vet Entomol 17(2):195–204PubMedCrossRefGoogle Scholar
  17. Corbet PS, Chadee DD (1993) An improved method for detecting substrate preferences shown by mosquitoes that exhibit ‘skip oviposition’. Physiol Entomol 18(2):114–118CrossRefGoogle Scholar
  18. Costa EAPA et al (2010) Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev Bras Entomol 54:488–493CrossRefGoogle Scholar
  19. Fay RW, Perry AS (1965) Laboratory studies of oviposition preference of Aedes aegypti. Mosq News 25:276–281Google Scholar
  20. Ganesan K et al (2006) Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Aust J Entomol 45(1):75–80CrossRefGoogle Scholar
  21. Gubler DJ, Bhattacharya NC (1971) Observations on reproductive history of Aedes (Stegomyia) albopictus in laboratory. Mosq News 31(3):356–359Google Scholar
  22. Guzman A, Isturiz RE (2010) Update on the global spread of dengue. Int J Antimicrob Ag 36(1):S40–S42CrossRefGoogle Scholar
  23. Harrington LC, Edman JD (2001) Indirect evidence against delayed “skip-oviposition” behavior by Aedes aegypti (Diptera : Culicidae) in Thailand. J Med Entomol 38(5):641–645PubMedCrossRefGoogle Scholar
  24. Harrington LC et al (2008) Influence of container size, location, and time of day on oviposition patterns of the dengue vector, Aedes aegypti, in Thailand. Vector Borne Zoonotic Dis 8(3):415–423PubMedCrossRefGoogle Scholar
  25. Lima MM et al (1988) Criadouros de Aedes aegypti encontrados em alguns bairros da cidade do Rio de Janeiro, RJ, Brasil, em 1984–85. Cad Saúde Pública 4:293–300CrossRefGoogle Scholar
  26. Martins VEP et al (2010) Distribuição espacial e características dos criadouros de Aedes albopictus e Aedes aegypti em Fortaleza, Estado do Ceará. Rev Soc Bras Med Trop 43:73–77PubMedCrossRefGoogle Scholar
  27. Mogi M, Mokry J (1980) Distribution of Wyeomyia smithii (Diptera: Culicidae) eggs in pitcher plants in Newfoundland, Canada. Trop Med 22:1–12Google Scholar
  28. Muir LE et al (1992) Aedes aegypti (Diptera: Culicidae) vision: response to stimuli from the optical environment. J Med Entomol 29(3):445–450PubMedGoogle Scholar
  29. Nyamah MA et al (2010) Categorization of potential breeding sites of dengue vectors in Johor, Malaysia. Trop Biomed 27(1):33–40PubMedGoogle Scholar
  30. Pan American Health Organization (1994) Dengue and dengue hemorrhagic fever in the Americas: guidelines for prevention and control. PAHO/WHOGoogle Scholar
  31. Pinheiro VC, Tadei WP (2002) Frequency, diversity, and productivity study on the Aedes aegypti most preferred containers in the city of Manaus, Amazonas, Brazil. Rev Inst Med Trop São Paulo 44(5):245–250PubMedCrossRefGoogle Scholar
  32. Ponnusamy L et al (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc Nat Acad Sci 105(27):9262–9267PubMedCrossRefGoogle Scholar
  33. Regis L et al (2008) Developing new approaches for detecting and preventing Aedes aegypti population outbreaks: basis for surveillance, alert and control system. Mem Inst Oswaldo Cruz 103:50–59PubMedCrossRefGoogle Scholar
  34. Reiter P (1996) Oviposition and dispersion of Aedes aegypti in an urban environment. Bull Soc Pathol Exot 89(2):120–122PubMedGoogle Scholar
  35. Reiter P (2007) Oviposition, dispersal, and survival in Aedes aegypti: implications for the efficacy of control strategies. Vector Borne Zoonotic Dis 7(2):261–273PubMedCrossRefGoogle Scholar
  36. Reiter P et al (1991) Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. J Am Mosq Control Assoc 7(1):52–55PubMedGoogle Scholar
  37. Saifur RG et al (2012) Changing domesticity of Aedes aegypti in northern peninsular Malaysia: reproductive consequences and potential epidemiological implications. PLoS One 7(2):e30919PubMedCentralPubMedCrossRefGoogle Scholar
  38. Silva VC et al (2006) Diversidade de criadouros e tipos de imóveis freqüentados por Aedes albopictus e Aedes aegypti. Rev Saúde Públ 40:1106–1111CrossRefGoogle Scholar
  39. Suleman M (1990) Intraspecific variation in the reproductive capacity of Anopheles stephensi (Diptera: Culicidae). J Med Entomol 27(5):819–828PubMedGoogle Scholar
  40. Vasconcelos PFC (2003) Febre amarela. Rev Soc Bras Med Trop 36:275–293PubMedCrossRefGoogle Scholar
  41. Vezzani D (2007) Review: artificial container-breeding mosquitoes and cemeteries: a perfect match. Trop Med Int Health 12(2):299–313PubMedCrossRefGoogle Scholar
  42. Wong J et al (2011) Oviposition site selection by the dengue vector Aedes aegypti and its implicationsfor dengue control. PLoS Negl Trop Dis 5(4):e1015PubMedCentralPubMedCrossRefGoogle Scholar
  43. World Health Organization (2009) Dengue: guidelines for diagnosis, treatment, prevention and control. WHOGoogle Scholar
  44. Zahiri N, Rau ME (1998) Oviposition attraction and repellency of Aedes aegypti (Diptera: Culicidae) to waters from conspecific larvae subjected to crowding, confinement, starvation, or infection. J Med Entomol 35(5):782–787PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • L. O. Oliva
    • 1
  • J. C. Correia
    • 1
  • C. M. R. Albuquerque
    • 1
  1. 1.Departamento de Zoologia, Centro de Ciências BiológicasUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations