Advertisement

Journal of Insect Behavior

, Volume 25, Issue 6, pp 529–542 | Cite as

Prey Abundance, Intraguild Predators, Ants and the Optimal Egg-laying Strategy of a Furtive Predator

  • Arnaud Sentis
  • Éric Lucas
  • William L. Vickery
Article

Abstract

Larval performance can have a great influence on female oviposition choice, especially in insects where the newly hatched offspring are unable to move any great distance to find an appropriate food source. For furtive predators, like the predatory midge Aphidoletes aphidimyza which preys on aphids while simultaneously residing and remaining undetected within their colonies, oviposition behaviour is crucial because these slow moving offspring are restrained to their natal colony. Here we develop a new model for predicting the optimum number of eggs that a furtive predator should lay in an aphid colony, based on: (1) the number of available prey (aphids); (2) the protection from predation conferred by “hiding” in the colony and (3) the effects of interspecific and intraspecific competition. We also explore the effect of aphid attendance by ants on oviposition behavior. We compare model predictions with empirical field observations of the clutch sizes of A. aphidimyza in apple orchards. The simplest of the four models best fits the observed data and provides the first field evidence that a furtive predator adjusts its clutch size as a function of prey density. The slope of the relationship between clutch size and aphid number is quite close to that predicted by our models suggesting that intra-clutch competition is the main factor governing furtive aphid midge oviposition choice.

Keywords

Optimal egg-laying intraguild predation Aphidoletes aphidimyza ants furtive predation Coccinellidae 

Notes

Acknowledgments

This work was funded by Natural Sciences and Engineering Research Council (NSERC) Discovery Grants to Éric Lucas and William L. Vickery. We thank Maryse Desrochers and Néomie Bourdon-Charest help with the field study. We thank the institut de recherche et de développement en agroenvironnement (IRDA) and parc national du Mont St-Bruno for giving us access to field sites. We thank Simon Daoust, Jacques Brodeur, Denis Réale, and two anonymous reviewer for comments on an earlier version of this paper.

References

  1. Agarwala BK, Bardhanroy P, Yasuda H, Takizawa T (2001) Prey consumption and oviposition of the aphidophagous predator Menochilus sexmaculatus (Coleoptera: Coccinellidae) in relation to prey density and adult size. Environ Entomol 30:1182–1187CrossRefGoogle Scholar
  2. Agarwala BK, Yasuda H, Kajita Y (2003) Effect of conspecific and heterospecific feces on foraging and oviposition of two predatory ladybirds: role of fecal cues in predator avoidance. J Chem Ecol 29:357–376PubMedCrossRefGoogle Scholar
  3. Bouchard D, Hill SB, Pilon JG (1988) Control of green apple aphid populations in an orchard achieved by releasing adults of Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Ecol Effect Aphid 51:257–260Google Scholar
  4. Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136PubMedCrossRefGoogle Scholar
  5. Charnov EL, Stephens DW (1988) On the evolution of host selection in solitary parasitoids. Am Nat 132:707–722CrossRefGoogle Scholar
  6. Craig T, Itami J, Price P (1989) A strong relationship between oviposition preference and larval performance in a shoot-galling sawfly. Ecology 70:1691–1699CrossRefGoogle Scholar
  7. Dixon AFG (1959) An experimental study of the searching behaviour of the predatory coccinellid beetle Adalia decempunctata (L.). J Anim Ecol 28:259–281CrossRefGoogle Scholar
  8. Dixon AFG, Jarošik V, Honĕk A (2005) Thermal requirements for development and resource partitioning in aphidophagous guilds. Eur J Entomol 102:407–411Google Scholar
  9. Evans EW (2003) Searching and reproductive behaviour of female aphidophagous ladybirds (Coleoptera: Coccinellidae): a review. Eur J Entomol 100:1–10Google Scholar
  10. Fréchette B, Alauzet C, Hemptinne JL (2003) Oviposition behaviour of the two-spot ladybird beetle Adalia bipunctata (L.)(Coleoptera: Coccinellidae) on plants with conspecific larval tracks. Arquipel Life Mar Sci Suppl 5:73–77Google Scholar
  11. Fréchette B, Coderre D, Lucas É (2006a) Chrysoperla rufilabris (Neuroptera: Chrysopidae) females do not avoid ovipositing in the presence of conspecific eggs. Biol Contr 37:354–358CrossRefGoogle Scholar
  12. Fréchette B, Dixon AFG, Alauzet C, Boughenou N, Hemptinne JL (2006b) Should aphidophagous ladybirds be reluctant to lay eggs in the presence of unsuitable prey? Entomol Exp Appl 118:121–127CrossRefGoogle Scholar
  13. Fréchette B, Larouche F, Lucas É (2008) Leucopis annulipes larvae (Diptera: Chamameyiidae) use a furtive predation strategy within aphid colonies. Eur J Entomol 105:399–403Google Scholar
  14. Godfray HCJ (1987) The evolution of clutch size in parasitic wasps. Am Nat 129:221–233CrossRefGoogle Scholar
  15. Guénard B (2007) Mutualisme fourmis-pucerons et guilde aphidiphage associée : le cas de la prédation furtive, Thèse de maîtrise, Université du Québec à Montréal, MontréalGoogle Scholar
  16. Havelka J, Zemek R (1999) Life table parameters and oviposition dynamics of various populations of the predacious gall-midge Aphidoletes aphidimyza. Entomol Exp Appl 91:481–484CrossRefGoogle Scholar
  17. Hemptinne JL, Dixon AFG, Coffin J (1992) Attack strategy of ladybird beetles (Coccinellidae): factors shaping their numerical response. Oecologia 90:238–245Google Scholar
  18. Jeoung YS, Choe YS, Oh IS, Han KH, Seo MJ, Youn YN (2003) Biological characteristics of the aphid-eating gall-midge, Aphidoletes aphidimyza (Diptera: Cecidomyiidae) as a biological control agents of aphids. Kor J Appl Entomol 42:241–248Google Scholar
  19. Jolicoeur P (1990) Bivariate allometry: interval estimation of the slopes of the ordinary and standardized normal major axes and structural relationship. J Theor Biol 144:275–285CrossRefGoogle Scholar
  20. Kaneko S (2003) Different impacts of two species of aphid-attending ants with different aggressiveness on the number of emerging adults of the aphid’s primary parasitoid and hyperparasitoids. Ecol Res 18:199–212CrossRefGoogle Scholar
  21. Kaneko S (2007) Predator and parasitoid attacking ant-attended aphids: effects of predator presence and attending ant species on emerging parasitoid numbers. Ecol Res 22:451–458CrossRefGoogle Scholar
  22. Katayama N, Suzuki N (2003) Bodyguard effects for aphids of Aphis craccivora Koch (Homoptera: Aphididae) as related to the activity of two ant species, Tetramorium caespitum Linnaeus (Hymenoptera: Formicidae) and Lasius niger L.(Hymenoptera: Formicidae). Appl Entomol Zool 38:427–433CrossRefGoogle Scholar
  23. Krivan V, Havelka J (2000) Leslie model for predatory gall-midge population. Ecol Model 126:73–77CrossRefGoogle Scholar
  24. Lack D (1947) The significance of clutch size, parts 1 and 2. Ibis 89:302–352CrossRefGoogle Scholar
  25. Lucas E, Brodeur J (1999) Oviposition site selection by the predatory midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae). Environ Entomol 28:622–627Google Scholar
  26. Lucas E, Brodeur J (2001) A fox in sheep’s clothing: furtive predator benefit from the communal defense of their prey. Ecology 82:3246–3250CrossRefGoogle Scholar
  27. Lucas E, Coderre D, Brodeur J (1998) Intraguild predation among aphid predators: characterization and influence of extraguild prey density. Ecology 73:1084–1092CrossRefGoogle Scholar
  28. Mangel M (1989) Evolution of host selection in parasitoids: does the state of the parasitoid matter? Am Nat 133:688–705CrossRefGoogle Scholar
  29. Marchand D, McNeil JN (2000) Effects of wind speed and atmospheric pressure on mate searching behavior in the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae). J Insect Behav 13:187–199Google Scholar
  30. Maynard Smith J (1976) Evolution and the theory of games. Cambridge University Press, CambridgeGoogle Scholar
  31. Minkenberg O, Tatar M, Rosenheim JA (1992) Egg load as a major source of variability in insect foraging and oviposition behavior. Oikos 65:134–142CrossRefGoogle Scholar
  32. Oliver T, Timms J, Taylor A, Leather S (2006) Oviposition responses to patch quality in the larch ladybird Aphidecta obliterata (Coleoptera: Coccinellidae): effects of aphid density, and con-and heterospecific tracks. Bull Entomol Res 96:25–34PubMedCrossRefGoogle Scholar
  33. Parker GA, Courtney SP (1984) Models of clutch size in insect oviposition. Theor Popul Biol 26:27–48CrossRefGoogle Scholar
  34. Rosenheim JA (1999) Characterizing the cost of oviposition in insects: a dynamic model. Evol Ecol 13:141–165CrossRefGoogle Scholar
  35. Ruzicka Z (1996) Oviposition-deterring pheromone in Chrysopidae (Neuroptera): Intra- and interspecific effects. Eur J Entomol 93:161–166Google Scholar
  36. Ruzicka Z (1997) Recognition of oviposition-deterring allomones by aphidophagous predators (Neuroptera: Chrysopidae, Coleoptera: Coccinellidae). Eur J Entomol 94:431–434Google Scholar
  37. Ruzicka Z, Havelka J (1998) Effects of oviposition-deterring pheromone and allomones on Aphidoletes aphidimyza (Diptera: Cecidomyiidae). Eur J Entomol 95:211–216Google Scholar
  38. SAS Institute (2001) JMP IN 5.1. SAS Institue, CaryGoogle Scholar
  39. Seagraves M (2009) Lady beetle oviposition behavior in response to the trophic environment. Biol Contr 51:313–322CrossRefGoogle Scholar
  40. Stewart-Jones A, Pope TW, Fitzgerald JD, Poppy GM (2007) The effect of ant attendance on the success of rosy apple aphid populations, natural enemy abundance and apple damage in orchards. Agr Forest Entomol 10:37–43Google Scholar
  41. Thompson J (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14CrossRefGoogle Scholar
  42. Völkl W (1992) Aphids or their parasitoids: who actually benefits from ant-attendance? J Anim Ecol 52:273–281CrossRefGoogle Scholar
  43. Wajnberg E (2006) Time allocation strategies in insect parasitoids: from ultimate predictions to proximate behavioral mechanisms. Behav Ecol Sociobiol 60:589–611CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Arnaud Sentis
    • 1
  • Éric Lucas
    • 1
  • William L. Vickery
    • 1
  1. 1.Groupe de recherche en écologie comportementale et animale, Département des sciences biologiquesUniversité du Québec à MontréalMontréalCanada

Personalised recommendations