Skip to main content
Log in

Genetic Variation in Foraging Traits and Life-History Traits of the Predatory Mite Neoseiulus womersleyi (Acari: Phytoseiidae) among Isofemale Lines

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

The predatory mite Neoseiulus womersleyi shows a significant correlation between its olfactory response and dispersal tendency in different geographical populations. This study investigated the genetic background of the relationship using isofemale lines. Y-tube olfactometer tests confirmed that there was a genetic component in predator response to herbivore-induced plant volatiles. Wind tunnel tests in the absence of the herbivore-induced plant volatiles revealed that the dispersal tendencies of N. womersleyi exhibited genetic variation among isofemale lines, and other experiments revealed the existence of significant differences in prey consumption rate, fecundity, and developmental time. However, there was no genetic correlation between behavioral traits (olfactory response, innate dispersal) and the other traits, suggesting that the positive correlation between the behavioral traits was not caused by genetic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  • Ashihara, W., Hamamura, T., and Shinkaji, N. (1978). Feeding, reproduction, and development of Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) on various food substances. Bull. Fruit Tree Res. Sta. 2: 91–98.

    Google Scholar 

  • Bernstein, C., Kacelnik, A., and Krebs, J. R. (1991). Individual decisions and the distribution of predators in a patchy environment. II. The influence of travel costs and structure of the environment. J. Anim. Ecol. 60: 205–225.

    Article  Google Scholar 

  • Bruin, J., Dicke, M., and Sabelis, M. W. (1992). Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia 48: 525–529.

    Article  CAS  Google Scholar 

  • Campan, E., Couty, A., Carton, Y., Pham-Delegue, M. H., and Kaiser, L. (2002). Variability and genetic components of innate fruit odour recognition in a parasitoid of Drosophila. Physiol. Entomol. 27: 243–250.

    Article  Google Scholar 

  • Charnov, E. L. (1976). Optimal foraging, the marginal value theory. Theor. Popul. Biol. 9: 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M. (1994). Local and systemic production of volatile herbivore-induced terpenoids: Their role in plant-carnivore mutualism. J. Plant Physiol. 143: 465–472.

    CAS  Google Scholar 

  • Dicke, M. (1999). Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol. Exp. Appl. 91: 131–142.

    Article  CAS  Google Scholar 

  • Dicke, M., and Sabelis, M. W. (1988). How do plants obtain predatory mites as bodyguards? Neth. J. Zool. 38: 148–165.

    Article  Google Scholar 

  • Dicke, M., Jong, M., Alers, M. P. T., Stelder, F. C. T., Wunderink, R., and Post, J. (1989). Quality control of mass-reared arthropods: Nutritional effects on performance of predatory mites. J. Appl. Ent. 108: 462–475.

    Article  Google Scholar 

  • Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., and Posthumus, M. A. (1990a). Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control. J. Chem. Ecol. 16: 3091–3118.

    Article  CAS  Google Scholar 

  • Dicke, M., van Beek, T. A., Posthumus, M. A., Dom, N. B., van Bokhoven, H., and de Groot, A. (1990b). Isolation and identification of volatile kairomone that affects acarine predator-prey interaction: Involvement of host plant in its production. J. Chem. Ecol. 16: 381–396.

    Article  CAS  Google Scholar 

  • Dicke, M., Van Der Maas, K. J., Takabayashi, J., and Vet, L. E. M. (1990c). Learning affects response to volatile allelochemicals by predatory mites. Proc. Exp. Appl. Entomol. 1: 31–36.

    Google Scholar 

  • Ewing, E. (1979). Genetic variation in a heterogeneous environment. VII. Temporal and spatial heterogeneity in infinite populations. Am. Nat. 114: 197–212.

    Article  Google Scholar 

  • Falconer, D. S. (1989). Introduction to Quantitative Genetics, 3rd edn. Longman, New York.

    Google Scholar 

  • Gillespie, J. H., and Turelli, M. (1989). Genotype-environment interactions and the maintenance of polygenic variation. Genetics 121: 129–138.

    PubMed  Google Scholar 

  • Gu, H., and Dorn, S. (2000). Genetic variation in behavioral response to herbivore-infested plants in the parasitic wasp, Cotesia glomerata (L.) (Hymenoptera: Braconidae). J. Insect Behav. 13: 141–156.

    Article  Google Scholar 

  • Hamamura, T. (1986). Studies on the biological control of kanzawa spider mite, Tetranychus kanzawai Kishida, by the chemical resistant predacious mite, Amblyseius longispinosus (Evans) in tea fields (Acarina: Tetranychidae, Phytoseiidae). Bull. Tea Res. Sta. 21: 122–197.

    Google Scholar 

  • Janssen, A., Hofker, C. D., Braun, A. R., Mesa, N., Sabelis, M. W., and Bellotti, A. C. (1990). Preselecting predatory mites for biological control: The use of an olfactometer. Bull. Entomol. Res. 80: 177–182.

    Google Scholar 

  • Jeppson, L. R., Keifer, H. H., and Baker, E. W. (1975). Mites Injurious to Economic Plants. University of California Press, Berkeley.

    Google Scholar 

  • Jia, F., Margolies, D. C., Boyer, J. E., and Charlton, R. E. (2002). Genetic variation in foraging traits among inbred lines of a predatory mite. Heredity 89: 371–379.

    Article  PubMed  CAS  Google Scholar 

  • Koveos, D. S., Kouloussis, N. A., and Broufas, G. D. (1995). Olfactory responses of the predatory mite Amblyseius andersoni Chant (Acari, Phytoseiidae) to bean plants infested by the spider mite Tetranychus urticae Koch (Acari, Tetranychidae). J. Appl. Ent. 119: 615–619.

    Google Scholar 

  • Krebs, J. R., Ryan, J. C., and Charnov, E. L. (1974). Hunting by expectation or optimal foraging? A study of patch use by chickadees. Anim. Behav. 22: 953–964.

    Article  Google Scholar 

  • Krips, O. E., Willems, P. E. L., Gols, R., Posthumus, M. A., and Dicke, M. (1999). The response of Phytoseiulus persimilis to spider mite-induced volatiles from gerbera: Influence of starvation and experience. J. Chem. Ecol. 25: 2623–2641.

    Article  CAS  Google Scholar 

  • Lewis, W. J., and Nordlund, D. A. (1985). Behavior-modifying chemicals to enhance natural enemy effectiveness. In Hoy, M. A., and Herzog, D. C. (Eds.), Biological Control in Agricultural IPM Systems, Academic Press, Orlando, pp. 89–101.

    Google Scholar 

  • MacArthur, R. H., and Pianka, E. R. (1966). On optimal use of a patchy environment. Am. Nat. 100: 603–609.

    Article  Google Scholar 

  • Mackay, T. F. C., Hackett, J. B., Lyman, R. F., Wayne, M. L., and Anholt, R. R. H. (1996). Quantitative genetic variation of odor-guided behavior in a natural population of Drosophila melanogaster. Genetics 144: 727–735.

    PubMed  CAS  Google Scholar 

  • Maeda, T. (2005). Correlation between olfactory responses, dispersal tendencies, and life-history traits of the predatory mite Neoseiulus womersleyi (Acari: Phytoseiidae) of eight local populations. Exp. Appl. Acarol. 37: 67–82.

    Article  PubMed  Google Scholar 

  • Maeda, T., and Takabayashi, J. (2001). Patch leaving decision of the predatory mite Amblyseius womersleyi (Acari: Phytoseiidae) based on multiple information from both inside and outside a prey patch. J. Insect Behav. 14: 829–839.

    Article  Google Scholar 

  • Maeda, T., Takabayashi, J., Yano, S., and Takafuji, A. (1999). Response of the predatory mite, Amblyseius womersleyi (Acari: Phytoseiidae), toward herbivore-induced plant volatiles: Variation in response between two local populations. Appl. Entomol. Zool. 34: 449–454.

    Google Scholar 

  • Maeda, T., Takabayashi, J., Yano, S., and Takafuji, A. (2000). The effects of rearing conditions on the olfactory response of predatory mites, Phytoseiulus persimilis and Amblyseius womersleyi (Acari: Phytoseiidae). Appl. Entomol. Zool. 35: 345–351.

    Article  Google Scholar 

  • Maeda, T., Takabayashi, J., Yano, S., and Takafuji, A. (2001). Variation in the olfactory response of 13 populations of the predatory mite Amblyseius womersleyi to Tetranychus urticae-infested plant volatiles (Acari: Phytoseiidae, Tetranychidae). Exp. Appl. Acarol. 25: 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Margolies, D. C., Sabelis, M. W., and Boyer, J. E. J. (1997). Response of a phytoseiid predator to herbivore-induced plant volatiles: selection on attraction and effect on prey exploitation. J. Insect Behav. 10: 695–709.

    Google Scholar 

  • Mayland, H., Margolies, D. C., and Charlton, R. E. (2000). Local and distant prey-related cues influence when an acarine predator leaves a prey patch. Entomol. Exp. Appl. 96: 245–252.

    Article  Google Scholar 

  • Parsons, P. A. (1980). Isofemale strains and evolutionary strategies in natural populations. Evol. Biol. 13: 175–217.

    Google Scholar 

  • Prevost, G. A., and Lewis, W. J. (1990). Heritable differences in the response of the braconid wasp Microplitis croceipes to volatile allelochemicals. J. Insect Behav. 3: 277–288.

    Article  Google Scholar 

  • Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E. (1980). Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11: 41–65.

    Article  Google Scholar 

  • Rose, M. R. (1982). Antagonistic pleiotropy, dominance, and genetic variation. Heredity 48: 63–78.

    Google Scholar 

  • Sabelis, M. W., and van de Baan, H. E. (1983). Location of distant spider mite colonies by phytoseiid predators: Demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol. Exp. Appl. 33: 303–314.

    Google Scholar 

  • Sabelis, M. W., Vermaat, J. E., and Groeneveld, A. (1984). Arrestment responses of the predatory mite, Phytoseiulus persimilis, to steep odor gradients of a kairomone. Physiol. Entomol. 9: 437–446.

    CAS  Google Scholar 

  • Sall, J., Creighton, L., and Lehman, A. (2004). JMP Start Statistics, 3rd edn. SAS Institute Inc., Cary, NC, USA.

    Google Scholar 

  • SAS Institute. (2002). JMP User’s Guide, version 5. SAS Institute, Inc., Cary, NC, USA.

  • Takabayashi, J., and Dicke, M. (1992). Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomol. Exp. Appl. 64: 187–193.

    Google Scholar 

  • Takabayashi, J., and Dicke, M. (1996). Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. 1: 109–113.

    Article  Google Scholar 

  • Takabayashi, J., Takahashi, S., Dicke, M., and Posthumus, M. A. (1995). Developmental stage of the herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21: 273–278.

    Article  CAS  Google Scholar 

  • Toyoshima, S., and Hinomoto, N. (2003). Variation of reproductive characteristics in local populations of Amblyseius womersleyi Schicha (Acari: Phytoseiidae). J. Acarol. Soc. Jpn. 12: 33–37.

    Article  Google Scholar 

  • Turlings, T. C. J., Loughrin, J. H., McCall, P. J., Rose, U. S. R., Lewis, W. J., and Tumlinson, J. H. (1995). How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. U. S. A. 92: 4169–4174.

    Article  PubMed  CAS  Google Scholar 

  • Vet, L. E. M., and Dicke, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37: 141–172.

    Article  Google Scholar 

  • Wang, Q., Gu, H., and Dorn, S. (2003). Selection on olfactory response to semiochemicals from a plant-host complex in a parasitic wasp. Heredity 91: 430–435.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Gu, H., and Dorn, S. (2004). Genetic relationship between olfactory response and fitness in Cotesia glomerata (L.). Heredity 92: 579–584.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank Dr. T. Noda and Dr. N. Hinomoto for critical review of an early draft of this paper. This work was supported by the Program for Young Researchers with Fixed-Term Appointments, Special Coordination Funds for Promoting Science and Technology, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Maeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeda, T. Genetic Variation in Foraging Traits and Life-History Traits of the Predatory Mite Neoseiulus womersleyi (Acari: Phytoseiidae) among Isofemale Lines. J Insect Behav 19, 573–589 (2006). https://doi.org/10.1007/s10905-006-9044-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-006-9044-1

KEY WORDS

Navigation