Advertisement

Journal of Insect Behavior

, 19:573 | Cite as

Genetic Variation in Foraging Traits and Life-History Traits of the Predatory Mite Neoseiulus womersleyi (Acari: Phytoseiidae) among Isofemale Lines

  • Taro MaedaEmail author
Article

The predatory mite Neoseiulus womersleyi shows a significant correlation between its olfactory response and dispersal tendency in different geographical populations. This study investigated the genetic background of the relationship using isofemale lines. Y-tube olfactometer tests confirmed that there was a genetic component in predator response to herbivore-induced plant volatiles. Wind tunnel tests in the absence of the herbivore-induced plant volatiles revealed that the dispersal tendencies of N. womersleyi exhibited genetic variation among isofemale lines, and other experiments revealed the existence of significant differences in prey consumption rate, fecundity, and developmental time. However, there was no genetic correlation between behavioral traits (olfactory response, innate dispersal) and the other traits, suggesting that the positive correlation between the behavioral traits was not caused by genetic factors.

KEY WORDS

dispersal tendency foraging strategy genetic correlation herbivore-induced plant volatiles olfactory response Tetranychus urticae 

Notes

ACKNOWLEDGMENTS

I thank Dr. T. Noda and Dr. N. Hinomoto for critical review of an early draft of this paper. This work was supported by the Program for Young Researchers with Fixed-Term Appointments, Special Coordination Funds for Promoting Science and Technology, MEXT, Japan.

REFERENCES

  1. Ashihara, W., Hamamura, T., and Shinkaji, N. (1978). Feeding, reproduction, and development of Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) on various food substances. Bull. Fruit Tree Res. Sta. 2: 91–98.Google Scholar
  2. Bernstein, C., Kacelnik, A., and Krebs, J. R. (1991). Individual decisions and the distribution of predators in a patchy environment. II. The influence of travel costs and structure of the environment. J. Anim. Ecol. 60: 205–225.CrossRefGoogle Scholar
  3. Bruin, J., Dicke, M., and Sabelis, M. W. (1992). Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia 48: 525–529.CrossRefGoogle Scholar
  4. Campan, E., Couty, A., Carton, Y., Pham-Delegue, M. H., and Kaiser, L. (2002). Variability and genetic components of innate fruit odour recognition in a parasitoid of Drosophila. Physiol. Entomol. 27: 243–250.CrossRefGoogle Scholar
  5. Charnov, E. L. (1976). Optimal foraging, the marginal value theory. Theor. Popul. Biol. 9: 129–136.PubMedCrossRefGoogle Scholar
  6. Dicke, M. (1994). Local and systemic production of volatile herbivore-induced terpenoids: Their role in plant-carnivore mutualism. J. Plant Physiol. 143: 465–472.Google Scholar
  7. Dicke, M. (1999). Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol. Exp. Appl. 91: 131–142.CrossRefGoogle Scholar
  8. Dicke, M., and Sabelis, M. W. (1988). How do plants obtain predatory mites as bodyguards? Neth. J. Zool. 38: 148–165.CrossRefGoogle Scholar
  9. Dicke, M., Jong, M., Alers, M. P. T., Stelder, F. C. T., Wunderink, R., and Post, J. (1989). Quality control of mass-reared arthropods: Nutritional effects on performance of predatory mites. J. Appl. Ent. 108: 462–475.CrossRefGoogle Scholar
  10. Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., and Posthumus, M. A. (1990a). Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control. J. Chem. Ecol. 16: 3091–3118.CrossRefGoogle Scholar
  11. Dicke, M., van Beek, T. A., Posthumus, M. A., Dom, N. B., van Bokhoven, H., and de Groot, A. (1990b). Isolation and identification of volatile kairomone that affects acarine predator-prey interaction: Involvement of host plant in its production. J. Chem. Ecol. 16: 381–396.CrossRefGoogle Scholar
  12. Dicke, M., Van Der Maas, K. J., Takabayashi, J., and Vet, L. E. M. (1990c). Learning affects response to volatile allelochemicals by predatory mites. Proc. Exp. Appl. Entomol. 1: 31–36.Google Scholar
  13. Ewing, E. (1979). Genetic variation in a heterogeneous environment. VII. Temporal and spatial heterogeneity in infinite populations. Am. Nat. 114: 197–212.CrossRefGoogle Scholar
  14. Falconer, D. S. (1989). Introduction to Quantitative Genetics, 3rd edn. Longman, New York.Google Scholar
  15. Gillespie, J. H., and Turelli, M. (1989). Genotype-environment interactions and the maintenance of polygenic variation. Genetics 121: 129–138.PubMedGoogle Scholar
  16. Gu, H., and Dorn, S. (2000). Genetic variation in behavioral response to herbivore-infested plants in the parasitic wasp, Cotesia glomerata (L.) (Hymenoptera: Braconidae). J. Insect Behav. 13: 141–156.CrossRefGoogle Scholar
  17. Hamamura, T. (1986). Studies on the biological control of kanzawa spider mite, Tetranychus kanzawai Kishida, by the chemical resistant predacious mite, Amblyseius longispinosus (Evans) in tea fields (Acarina: Tetranychidae, Phytoseiidae). Bull. Tea Res. Sta. 21: 122–197.Google Scholar
  18. Janssen, A., Hofker, C. D., Braun, A. R., Mesa, N., Sabelis, M. W., and Bellotti, A. C. (1990). Preselecting predatory mites for biological control: The use of an olfactometer. Bull. Entomol. Res. 80: 177–182.Google Scholar
  19. Jeppson, L. R., Keifer, H. H., and Baker, E. W. (1975). Mites Injurious to Economic Plants. University of California Press, Berkeley.Google Scholar
  20. Jia, F., Margolies, D. C., Boyer, J. E., and Charlton, R. E. (2002). Genetic variation in foraging traits among inbred lines of a predatory mite. Heredity 89: 371–379.PubMedCrossRefGoogle Scholar
  21. Koveos, D. S., Kouloussis, N. A., and Broufas, G. D. (1995). Olfactory responses of the predatory mite Amblyseius andersoni Chant (Acari, Phytoseiidae) to bean plants infested by the spider mite Tetranychus urticae Koch (Acari, Tetranychidae). J. Appl. Ent. 119: 615–619.Google Scholar
  22. Krebs, J. R., Ryan, J. C., and Charnov, E. L. (1974). Hunting by expectation or optimal foraging? A study of patch use by chickadees. Anim. Behav. 22: 953–964.CrossRefGoogle Scholar
  23. Krips, O. E., Willems, P. E. L., Gols, R., Posthumus, M. A., and Dicke, M. (1999). The response of Phytoseiulus persimilis to spider mite-induced volatiles from gerbera: Influence of starvation and experience. J. Chem. Ecol. 25: 2623–2641.CrossRefGoogle Scholar
  24. Lewis, W. J., and Nordlund, D. A. (1985). Behavior-modifying chemicals to enhance natural enemy effectiveness. In Hoy, M. A., and Herzog, D. C. (Eds.), Biological Control in Agricultural IPM Systems, Academic Press, Orlando, pp. 89–101.Google Scholar
  25. MacArthur, R. H., and Pianka, E. R. (1966). On optimal use of a patchy environment. Am. Nat. 100: 603–609.CrossRefGoogle Scholar
  26. Mackay, T. F. C., Hackett, J. B., Lyman, R. F., Wayne, M. L., and Anholt, R. R. H. (1996). Quantitative genetic variation of odor-guided behavior in a natural population of Drosophila melanogaster. Genetics 144: 727–735.PubMedGoogle Scholar
  27. Maeda, T. (2005). Correlation between olfactory responses, dispersal tendencies, and life-history traits of the predatory mite Neoseiulus womersleyi (Acari: Phytoseiidae) of eight local populations. Exp. Appl. Acarol. 37: 67–82.PubMedCrossRefGoogle Scholar
  28. Maeda, T., and Takabayashi, J. (2001). Patch leaving decision of the predatory mite Amblyseius womersleyi (Acari: Phytoseiidae) based on multiple information from both inside and outside a prey patch. J. Insect Behav. 14: 829–839.CrossRefGoogle Scholar
  29. Maeda, T., Takabayashi, J., Yano, S., and Takafuji, A. (1999). Response of the predatory mite, Amblyseius womersleyi (Acari: Phytoseiidae), toward herbivore-induced plant volatiles: Variation in response between two local populations. Appl. Entomol. Zool. 34: 449–454.Google Scholar
  30. Maeda, T., Takabayashi, J., Yano, S., and Takafuji, A. (2000). The effects of rearing conditions on the olfactory response of predatory mites, Phytoseiulus persimilis and Amblyseius womersleyi (Acari: Phytoseiidae). Appl. Entomol. Zool. 35: 345–351.CrossRefGoogle Scholar
  31. Maeda, T., Takabayashi, J., Yano, S., and Takafuji, A. (2001). Variation in the olfactory response of 13 populations of the predatory mite Amblyseius womersleyi to Tetranychus urticae-infested plant volatiles (Acari: Phytoseiidae, Tetranychidae). Exp. Appl. Acarol. 25: 55–64.PubMedCrossRefGoogle Scholar
  32. Margolies, D. C., Sabelis, M. W., and Boyer, J. E. J. (1997). Response of a phytoseiid predator to herbivore-induced plant volatiles: selection on attraction and effect on prey exploitation. J. Insect Behav. 10: 695–709.Google Scholar
  33. Mayland, H., Margolies, D. C., and Charlton, R. E. (2000). Local and distant prey-related cues influence when an acarine predator leaves a prey patch. Entomol. Exp. Appl. 96: 245–252.CrossRefGoogle Scholar
  34. Parsons, P. A. (1980). Isofemale strains and evolutionary strategies in natural populations. Evol. Biol. 13: 175–217.Google Scholar
  35. Prevost, G. A., and Lewis, W. J. (1990). Heritable differences in the response of the braconid wasp Microplitis croceipes to volatile allelochemicals. J. Insect Behav. 3: 277–288.CrossRefGoogle Scholar
  36. Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E. (1980). Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11: 41–65.CrossRefGoogle Scholar
  37. Rose, M. R. (1982). Antagonistic pleiotropy, dominance, and genetic variation. Heredity 48: 63–78.Google Scholar
  38. Sabelis, M. W., and van de Baan, H. E. (1983). Location of distant spider mite colonies by phytoseiid predators: Demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol. Exp. Appl. 33: 303–314.Google Scholar
  39. Sabelis, M. W., Vermaat, J. E., and Groeneveld, A. (1984). Arrestment responses of the predatory mite, Phytoseiulus persimilis, to steep odor gradients of a kairomone. Physiol. Entomol. 9: 437–446.Google Scholar
  40. Sall, J., Creighton, L., and Lehman, A. (2004). JMP Start Statistics, 3rd edn. SAS Institute Inc., Cary, NC, USA.Google Scholar
  41. SAS Institute. (2002). JMP User’s Guide, version 5. SAS Institute, Inc., Cary, NC, USA.Google Scholar
  42. Takabayashi, J., and Dicke, M. (1992). Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomol. Exp. Appl. 64: 187–193.Google Scholar
  43. Takabayashi, J., and Dicke, M. (1996). Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. 1: 109–113.CrossRefGoogle Scholar
  44. Takabayashi, J., Takahashi, S., Dicke, M., and Posthumus, M. A. (1995). Developmental stage of the herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21: 273–278.CrossRefGoogle Scholar
  45. Toyoshima, S., and Hinomoto, N. (2003). Variation of reproductive characteristics in local populations of Amblyseius womersleyi Schicha (Acari: Phytoseiidae). J. Acarol. Soc. Jpn. 12: 33–37.CrossRefGoogle Scholar
  46. Turlings, T. C. J., Loughrin, J. H., McCall, P. J., Rose, U. S. R., Lewis, W. J., and Tumlinson, J. H. (1995). How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. U. S. A. 92: 4169–4174.PubMedCrossRefGoogle Scholar
  47. Vet, L. E. M., and Dicke, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37: 141–172.CrossRefGoogle Scholar
  48. Wang, Q., Gu, H., and Dorn, S. (2003). Selection on olfactory response to semiochemicals from a plant-host complex in a parasitic wasp. Heredity 91: 430–435.PubMedCrossRefGoogle Scholar
  49. Wang, Q., Gu, H., and Dorn, S. (2004). Genetic relationship between olfactory response and fitness in Cotesia glomerata (L.). Heredity 92: 579–584.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Insect Interaction Research UnitNational Institute of Agrobiological SciencesTsukuba, IbarakiJapan

Personalised recommendations