Prey Selection by the Lady Beetle Harmonia axyridis: The Influence of Prey Mobility and Prey Species

  • Caroline Provost
  • Éric Lucas
  • Daniel Coderre
  • Gérald Chouinard
Article

The influence of prey mobility and species on prey selection by the coccinellid Harmonia axyridis Pallas was determined under laboratory conditions for two prey species, Hyaliodes vitripennis (Say) and Tetranychus urticae Koch. Prey selection was influenced by prey mobility. In the presence of active prey, the coccinellid selected T. urticae while in presence of immobilized prey, H. vitripennis was preferred. Harmonia axyridis searching time was longer in the presence of active H. vitripennis than in the presence of active T. urticae. Moreover, the coccinellid capture rate was lower for active H. vitripennis caused by effective defensive mechanisms. Prey suitability was affected by prey mobility and species. Immobilized H. vitripennis were the most profitable prey, i.e. induced a shorter developmental time and no mortality. However, active H. vitripennis were not a suitable food source for H. axyridis. Our results suggested that three factors are involved in prey selection by H. axyridis: (i) prey mobility; (ii) prey defensive mechanisms; and (iii) prey species.

KEY WORDS:

foraging behavior prey selection prey mobility defensive mechanisms intraguild predation 

REFERENCES

  1. Allan, J. D., Flecker, A. S., and McClintock, N. L. (1987). Prey preference of stoneflies: Sedentary vs mobile prey. Oikos 49: 323–331.CrossRefGoogle Scholar
  2. Arnoldi, D., Stewart, R. K., and Boivin, G. (1992). Predatory mirids of the green apple aphid Aphis pomi, the two-spotted spider mite Tetranychus urticae and the european red mite Panonychus ulmi in apple orchard in Québec. Entomophaga 37: 283–292.CrossRefGoogle Scholar
  3. Burgio, G., Santi, F., and Maini, S. (2002). On intra-guild predation and cannibalism in Harmonia axyridis (Pallas) and Adalia bipunctata L. (Coleoptera: Coccinellidae). Biol. Control 24: 110–116.CrossRefGoogle Scholar
  4. Carter, M. C., and Dixon, A. F. (1982). Habitat quality and the foraging behaviour of coccinellid larvae. J. Anim. Ecol. 51: 865–878.CrossRefGoogle Scholar
  5. Chouinard, G., Firlej, A., Vanhoosthuyse, F., and Vincent, C. (2000). Guide d’identification des ravageurs du pommier et de leurs ennemis naturels, Conseil des Productions végétales du Québec, Québec.Google Scholar
  6. Chouinard, G., Roy, M., and Vincent, C. (1992). Ravageurs et faune auxiliaire des vergers de pommiers au Québec en 1992. Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu (Québec). Résumé Des Recherches. 21: 7–9.Google Scholar
  7. Cisneros, J. J., and Rosenheim, J. A. (1997). Ontogenetic change of prey preference in the generalist predator Zelus renardii and its influence on predator-predator interactions. Ecol. Entomol. 22: 399–407.CrossRefGoogle Scholar
  8. Clements, D. R., and Harmsen, R. (1990). Predatory behavior and prey-stage preference of stigmaeid and phytoseid mites and their potential compatibility in biological control. Can. Ent. 122: 321–328.CrossRefGoogle Scholar
  9. Cottrell, T. E., and Yeargan, K. V. (1998). Intraguild predation between an introduced lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), and a native lady beetle, Coleomegilla maculata (Coleoptera: Coccinellidae). J. Kansas Entomol. Soc. 71: 159–163.Google Scholar
  10. Erickson, K. S., and Morse, D. H. (1997). Predator size and the suitability of a common prey. Oecologia. 109: 608–614.CrossRefGoogle Scholar
  11. Eubanks, M. D., and Denno, R. F. (2000). Health food versus fast food: the effects of prey quality and mobility on prey selection by a generalist predator and indirect interactions among prey species. Ecol. Entomol. 25: 140–146.CrossRefGoogle Scholar
  12. Hazzard, R. V., and Ferro, D. N. (1991). Feeding responses of adult Coleomegilla maculata (Coleoptera: Coccinellidae) to eggs of Colorado potato beetle (Coleoptera: Chrysomelidae) and green peach aphids (Homoptera: Aphididae). Environ. Entomol. 20: 644–651.Google Scholar
  13. Houck, M. A. (1991). Time and resource partitioning in Stethorus punctum (Coleoptera: Coccinellidae). Environ. Entomol. 20: 494–497.Google Scholar
  14. Jeschke, J. M., and Tollrian, R. (2000). Density-dependent effects of prey defences. Oecologia 123: 391–396.CrossRefGoogle Scholar
  15. Kajita, Y., Takamo, F., Yasuda, H., and Agarwala, K. (2000). Effects of indigenous ladybird species (Coleoptera: Coccinellidae) on the survival of an exotic species in relation to prey abundance. Appl. Entomol. Zool. 35: 473–479.CrossRefGoogle Scholar
  16. Kalaskar, A., and Evans, E. W. (2001). Larval responses of aphidophagous lady beetles (Coleoptera: Coccinellidae) to weevil larvae versus aphids as prey. Ann. Entomol. Soc. Am. 94: 76–81.CrossRefGoogle Scholar
  17. Koch, R. L. (2003). The multicoloured Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts. J. Insect Sci. 3: 32.PubMedGoogle Scholar
  18. Lucas, É., and Alomar, O. (2001). Macrolophus caliginosus (Wagner) as an intraguild prey for the zoophytophagous Dicyphus tamaninii Wagner (Heteroptera: Miridae). Biol. Control. 20: 147–152.CrossRefGoogle Scholar
  19. Lucas, É., Coderre, D., and Vincent, C. (1997). Voracity and feeding preference of two aphidophagous coccinellids on Aphis citricola and Tetranychus urticae. Entomol. Exp. Appl. 85: 151–159.CrossRefGoogle Scholar
  20. Michaud, J. P. (2002). Biological control of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae) in Florida: A preliminary report. Entomol. News 113: 216–222.Google Scholar
  21. Molles, M. C., and Pietruszka, R. D. (1987). Prey selection by a stonefly: The influence of hunger and prey size. Oecologia 72: 473–478.CrossRefGoogle Scholar
  22. Nordlund, D. A., and Morrison, R. K. (1990). Handling time, prey preference, and functional response for Chrysoperla rufilabris in the laboratory. Entomol. Exp. Appl. 57: 237–242.CrossRefGoogle Scholar
  23. Phoofolo, M. W., and Obrycki J. J. (1998). Potential for intraguild predation and competition among predatory Coccinellidae and Chrysopidae. Entomol. Exp. Appl. 89: 47–55.CrossRefGoogle Scholar
  24. Polis, G. A., Myers, C. A., and Holt, R. D. (1989). The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20: 297–330.CrossRefGoogle Scholar
  25. Provost, C., Coderre, D., Lucas, É., Chouinard, G., and Bostanian, N. J. (2005). Intraguild predation and insecticide: Impact on predation efficacy of mite predators. Pest Manage. Sci. 61: 532–538.CrossRefGoogle Scholar
  26. Roger, C., Coderre, D., and Boivin, G. (2000). Differential prey utilization by the generalist predator Coleomegilla maculata lengi according to prey size and species. Entomol. Exp. Appl. 94: 3–13.CrossRefGoogle Scholar
  27. Rosenheim, J. A., and Corbett, A. (2003). Omnivory and the indeterminacy of predator function: can a knowledge of foraging behavior help? Ecology 84: 2538–2548.CrossRefGoogle Scholar
  28. SAS Institute (2000). JMP In software, version 4.0.2., SAS Institute Inc., Cary, NC.Google Scholar
  29. Schmidt, J. M., Taylor, J. R., and Rosenheim, J. A. (1998). Cannibalism and intraguild predation in the predatory Heteroptera. In Coll, M., and Ruberson, J. R. (Eds.), Predatory Heteroptera: Their Ecology and use in Biological Control, Thomas Say Publications, pp. 131–169.Google Scholar
  30. Sih, A., and Christensen, B. (2001). Optimal diet theory: When does it work, and when and why does it fail? Anim. Behav. 61: 379–390.CrossRefGoogle Scholar
  31. Snyder, W. E., and Ives, A. R. (2004). Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid biocontrol. Ecology 84: 91–107.CrossRefGoogle Scholar
  32. Soares, A. O., Coderre, D., and Schanderl, H. (2004). Dietary self-selectionby the adults of the aphidophagous lady beetle Harmonia axyridis (Coleoptera: Coccinellidae). J. Anim. Ecol. 73: 478–486.CrossRefGoogle Scholar
  33. Stephen, D. W., and Krebs, J. R. (1986). Foraging theory, Princeton University Press, Princeton.Google Scholar
  34. Stuart, R. J., Michaud, J. P., Olsen, L., and McCoy, C. W. (2002). Lady beetles as potential predators of the root weevil Diaprepes abbreviatus (Coleoptera: Curculionidae) in Florida citrus. Fla. Entomol. 85: 409–416.CrossRefGoogle Scholar
  35. Sullivan, K. A. (1984). Age-specific profitability and prey choice. Anim. Behav. 36: 613–615.CrossRefGoogle Scholar
  36. Veeravel, R., and Baskaran, P. (1995). Effect of prey and predator age on the feeding preference and rate of predation by two predators Coccinella transversalis Fab. and Cheilomenes sexmaculatus (Coleoptera: Coccinellidae). J. Biol. Control 9: 26–29.Google Scholar
  37. Villanueva, R. T., Michaud, J. P., and Childers, C. C. (2004). Ladybeetles as predators of pest and predacious mites in citrus. J. Entomol. Sci. 39: 23–29.Google Scholar
  38. Waldbauer, G. P., and Friedman, S. (1991). Self-selection of optimal diets by insects. Annu. Rev. Entomol. 36: 43–63.CrossRefGoogle Scholar
  39. Yasuda, H., and Ohnuma, N. (1999). Effect of cannibalism and predation on the larval performance of two ladybird beetles. Entomol. Exp. Appl. 93: 63–67.CrossRefGoogle Scholar
  40. Yasuda, H., and Shinya, K. (1997). Cannibalism and interspecific predation in two predatory ladybirds in relation to prey abundance in the field. Entomophaga. 42: 153–163.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Caroline Provost
    • 1
    • 3
  • Éric Lucas
    • 1
  • Daniel Coderre
    • 1
  • Gérald Chouinard
    • 2
  1. 1.Département des Sciences Biologiques, Groupe de Recherche en Écologie Comportemen-tale et Animale (GRECA)Université du Québec à MontréalQuébecCanada
  2. 2.Institut de Recherche et de Développement en AgroenvironnementQuébecCanada
  3. 3.QuébecCanada

Personalised recommendations