Journal of Insect Behavior

, Volume 19, Issue 2, pp 197–218

Factors Influencing Site Abandonment and Site Selection in a Sit-and-Wait Predator: A Review of Pit-Building Antlion Larvae

Article

There is a large body of evidence indicating that predator behavior may strongly influence patterns and processes at the population and community level. Site selection is a major component of fitness in sit-and-wait predators, especially when relocation is rare. Although several review articles dealt with these issues in web-building spiders, this is the first attempt to summarize the effects of biotic and abiotic factors on site selection and relocation in another group of sit-and-wait predators, the pit-building antlions (Neuroptera: Myrmeleontidae). Our synthesis shows that prey abundance may have relatively little effect on pit relocation and that physical properties of the habitat or competition often override its effect. We suggest that owing to a variety of constraints such as physiological constraints or difficulties in assessing site quality, site selection and relocation are not necessarily optimal and thus food intake rate is not maximized. We call for a multi-factorial study on a single species in order to pinpoint the dominant factors and to assess to what extent they influence site selection and relocation. We conclude by proposing new research directions, such as studying whether pit relocation is an adaptive response, when controlling for possible phylogenetic effects.

KEY WORDS:

antlions spiders sit-and-wait predators habitat selection optimal foraging foraging mode 

REFERENCES

  1. Allen, G. R., and Croft, D. B. (1985). Soil particle size and the pit morphology of the Australian ant-lions Myrmeleon diminutus and Myrmeleon pictifrons (Neuroptera: Myrmeleontidae). Aust. J. Zool. 33: 863–874.CrossRefGoogle Scholar
  2. Arnett, A. E., and Gotelli, N. J. (2001). Pit-building decisions of larval ant lions: Effects of larval age, temperature, food, and population source. J. Insect Behav. 14: 89–97.CrossRefGoogle Scholar
  3. Bilde, T., and Lubin, Y. (2001). Kin recognition and cannibalism in a subsocial spider. J. Evol. Biol. 14: 959–966.CrossRefGoogle Scholar
  4. Boake, C. R. B., Andow, D., and Visscher, P. K. (1984). Spacing of ant-lions and their pits. Am. Midl. Nat. 111: 192–194.CrossRefGoogle Scholar
  5. Botz, J. T., Loudon, C., Barger, J. B., Olafsen, J. S., and Steeples, D. W. (2003). Effects of slope and particle size on ant locomotion: Implications for choice of substrate by antlions. J. Kansas Entomol. Soc. 76: 426–435.Google Scholar
  6. Brown, J. S. (1988). Patch use as an indicator of habitat preference, predation risk, and competition. Behav. Ecol. Sociobiol. 22: 37–47.CrossRefGoogle Scholar
  7. Buddle, C. M., Walker, S. E., and Rypstra, A. L. (2003). Cannibalism and density-dependent mortality in the wolf spider Pardosa milvina (Araneae: Lycosidae). Can. J. Zool. 81: 1293–1297.CrossRefGoogle Scholar
  8. Cain, M. L. (1987). Prey capture behavior and diel movement of Brachynemurus (Neuroptera: Myrmeleontidae) antlion larvae in south central Florida. Fla. Entomol. 70: 397–400.CrossRefGoogle Scholar
  9. Charnov, E. (1976). Optimal foraging, the marginal value theorem. Theor. Pop. Biol. 9: 129–136.CrossRefGoogle Scholar
  10. Chmiel, K., Herberstein, M. E., and Elgar, M. A. (2000). Web damage and feeding experience influence web site tenacity in the orb-web spider Argiope keyserlingi Karsch. Anim. Behav. 60: 821–826.PubMedCrossRefGoogle Scholar
  11. Crowley, P. H., and Linton, M. C. (1999). Antlion foraging: Tracking prey across space and time. Ecology 80: 2271–2282.Google Scholar
  12. Daly, H. V., Doyen, J. T., and Purcell, A. H. (1998). Introduction to Insect Biology and Diversity, Oxford University Press, New York, pp. 447–453.Google Scholar
  13. Day, M. D., and Zalucki, M. P. (2000). Effect of density on spatial distribution, pit formation and pit diameter of Myrmeleon acer Walker, (Neuroptera: Myrmeleontidae): Patterns and processes. Austral Ecology 25: 58–64.CrossRefGoogle Scholar
  14. Devetak, D. (2005). Effects of larval antlions Euroleon nostras (Neuroptera, Myrmeleontidae) and their pits on the escape-time of ants. Physiol. Entomol. 30: 82–86.CrossRefGoogle Scholar
  15. Eltz, T. (1997). Foraging in the ant-lion Myrmeleon mobilis Hagen 1888 (Neuroptera: Myrmeleontidae): Behavioral flexibility of a sit-and-wait predator. J. Insect Behav. 10: 1–11.CrossRefGoogle Scholar
  16. Farji-Brener, A. G. (2003). Microhabitat selection by antlion larvae, Myrmeleon crudelis: Effect of soil particle size on pit-trap design and prey capture. J. Insect Behav. 16: 783–796.CrossRefGoogle Scholar
  17. Gatti, M. G., and Farji-Brener, A. G. (2002) Low density of ant-lion larva (Myrmeleon crudelis) in ant-Acacia clearings: High predation risk or inadequate substrate? Biotropica 34: 458–462.CrossRefGoogle Scholar
  18. Gotelli, N. J. (1993). Ant lion zones: Causes of high-density predator aggregations. Ecology 74: 226–237.CrossRefGoogle Scholar
  19. Gotelli, N. J. (1996). Ant community structure: Effects of predatory ant lions. Ecology 77: 630–638.CrossRefGoogle Scholar
  20. Gotelli, N. J. (1997). Competition and coexistence of larval ant lions. Ecology 78: 1761–1773.CrossRefGoogle Scholar
  21. Griffiths, D. (1980). The feeding biology of ant-lion larvae: Prey capture, handling and utilization. J. Anim. Ecol. 49: 99–125.CrossRefGoogle Scholar
  22. Griffiths, D. (1986). Pit construction by ant-lion larvae: A cost-benefit analysis. J. Anim. Ecol. 55: 39–57.CrossRefGoogle Scholar
  23. Griffiths, D. (1991). Intraspecific competition in larvae of the ant-lion Morter sp. and interspecific interactions with Macroleon quinquemaculatus. Ecol. Entomol. 16: 193–201.CrossRefGoogle Scholar
  24. Griffiths, D. (1992). Interference competition in ant-lion (Macroleon quinquemaculatus) larvae. Ecol. Entomol. 17: 219–226.CrossRefGoogle Scholar
  25. Griffiths, D. (1993). Inrasepcific competition in ant-lion (Macroleon quinquemaculatus) larvae in the field. Oecologia 93: 531–537.CrossRefGoogle Scholar
  26. Hauber, M. E. (1999). Variation in pit size of antlion (Myrmeleon carolinus) larvae: The importance of pit construction. Physiol. Entomol. 24: 37–40CrossRefGoogle Scholar
  27. Heinrich, B., and Heinrich, M. J. E. (1984). The pit-trapping foraging strategy of the antlion, Myrmeleon immaculatus DeGeer (Neuroptera: Myrmeleontidae). Behav. Ecol. Sociobiol. 14: 151–160.CrossRefGoogle Scholar
  28. Henschel, J. R., Ward, D., and Lubin, Y. (1992). The importance of thermal factors for nest-site selection, web construction and behaviour of Stegodyphus lineatus (Araneae: Eresidae) in the Negev desert. J. therm. Biol. 17: 97–106.CrossRefGoogle Scholar
  29. Inoue, T., and Matsura, T. (1983). Foraging strategy of a mantid, Paratenodera angustipennis S.: Mechanisms of switching tactics between ambush and active search. Oecologia 56: 264–271.CrossRefGoogle Scholar
  30. Jakob, E. M., Porter, A. H., and Uetz, G. W. (2001). Site fidelity and the costs of movement among territories: An example from colonial web-building spiders. Can. J. Zool. 79: 2094–2100.CrossRefGoogle Scholar
  31. Janetos, A. C. (1986). Web site selection: Are we asking the right questions? In Shear, W. A. (ed.), Spiders: Webs, Behavior and Evolution, Stanford University Press, Stanford, CA, pp. 9–22.Google Scholar
  32. Jenkins, B. A. (1994). The behavioral response of the antlion Myrmeleon pictifrons to a sudden change in prey capture rate. Acta Oecol. 15: 231–240.Google Scholar
  33. Li, D., and Lee, W. S. (2004). Predator-induced plasticity in web-building behaviour. Anim. Behav. 67: 309–318.CrossRefGoogle Scholar
  34. Linton, M. C., Crowley, P. H., Williams, J. T., Dillon, P. M., Aral, H., Strohmeier, K. L., and Wood, C. (1991). Pit relocation by antlion larvae: A simple model and laboratory test. Evol. Ecol. 5: 93–104.CrossRefGoogle Scholar
  35. Lomascolo, S., and Farji-Brener, A. G. (2001). Adaptive short-term changes in pit design by antlion larvae (Myrmeleon sp.) in response to different prey conditions. Ethol. Ecol. Evol. 13: 393–397.CrossRefGoogle Scholar
  36. Loiterton, S. J., and Magrath, R. D. (1996). Substrate type affects partial prey consumption by larvae of the antlion Myrmeleon acer (Neuroptera: Myrmeleontidae). Aust. J. Zool. 44: 589–597.CrossRefGoogle Scholar
  37. Lubin, Y., Ellner, S., and Kotzman, M. (1993). Web relocation and habitat selection in a desert widow spider. Ecology 74: 1915–1928.CrossRefGoogle Scholar
  38. Lubin, Y., Henschel, J. R., and Baker, M. B. (2001). Costs of aggregation: Shadow competition in a sit-and-wait predator. Oikos 95: 59–68.CrossRefGoogle Scholar
  39. Lucas, J. R. (1982). The biophysics of pit construction by antlion larvae (Myrmeleon, Neuroptera). Anim. Behav. 30: 651–664.CrossRefGoogle Scholar
  40. Lucas, J. R. (1985). Metabolic rates and pit-construction costs of two antlion species. J. Anim. Ecol. 54: 295–309.CrossRefGoogle Scholar
  41. Lucas, J. R. (1986). Antlion pit construction and kleptoparasitic prey. Fla. Entomol. 69: 702–710.CrossRefGoogle Scholar
  42. Lucas, J. R. (1989a). Differences in habitat use between two pit-building antlion species: Causes and consequences. Am. Midl. Nat. 121: 84–98.CrossRefGoogle Scholar
  43. Lucas, J. R. (1989b). The structure and function of antlion pits: Slope asymmetry and predator prey-interactions. Anim. Behav. 38: 318–330.CrossRefGoogle Scholar
  44. Lucas, J. R., and Stange, L. A. (1981). Key and descriptions to the Myrmeleon larvae of Florida (Neuroptera: Myrmeleontidae). Fla. Entomol. 64: 207–216.CrossRefGoogle Scholar
  45. MacKay, W. P. (1982). The effect of predation of western widow spiders (Araneae: Theridiidae) on harvester ants (Hymonptera: Formicidae). Oecologia 53: 406–411.CrossRefGoogle Scholar
  46. Mansell, M. W. (1986). Southern African ant-lions. Antenna 10: 121–124.Google Scholar
  47. Mansell, M. W. (1988). The pitfall trap of the Australian ant-lion Callistoleon illustris (Gerstaecker) (Neuroptera: Myrmeleontidae): An evolutionary advance. Aust. J. Zool. 36: 351–356.CrossRefGoogle Scholar
  48. Marsh, A. C. (1987). Thermal responses and temperature tolerance of a desert ant-lion larva. J. Therm. Biol. 12: 295–300.CrossRefGoogle Scholar
  49. Matsura, T. (1987). An experimental study on the foraging behavior of a pit-building antlion larva, Myrmeleon bore. Res. Popul. Ecol. 29:17–26.CrossRefGoogle Scholar
  50. Matsura, T., and Murao, T. (1994). Comparative study on the behavioral response to starvation in three species of antlion larvae (Neuroptera: Myrmeleontidae). J. Insect Behav. 7: 873–884.CrossRefGoogle Scholar
  51. Matsura, T., and Takano, H. (1989). Pit-relocation of antlion larvae in relation to their density. Res. Popul. Ecol. 31: 225–234.CrossRefGoogle Scholar
  52. McClure, M. S. (1976). Spatial distribution of pit-making ant lion larvae (Neuroptera: Myrmeleontidae): Density effects. Biotropica 8: 179–183.CrossRefGoogle Scholar
  53. Morrison, L. W. (2004). Spatiotemporal variation in antlion (Neuroptera: Myrmeleontidae) density and impacts on ant (Hymenoptera: Formicidae) and generalized arthropod foraging. Ann. Entomol. Soc. Am. 97: 913–922.CrossRefGoogle Scholar
  54. Nakata, K., and Ushimaru, A. (1999). Feeding experience affects web relocation and investment in web threads in an orb-web spider, Cyclosa argenteoalba. Anim. Behav. 57: 1251–1255.PubMedCrossRefGoogle Scholar
  55. Olive, C. W. (1982). Behavioral response of a sit-and-wait predator to spatial variation in foraging gain. Ecology 63: 912–920.CrossRefGoogle Scholar
  56. Parker, G. A., and Maynard-Smith, J. (1990). Optimality theory in evolutionary biology. Nature 348: 27–33.CrossRefGoogle Scholar
  57. Pasquet, A., Ridwan, A., and Leborgne, R. (1994). Presence of potential prey affects web-building in an orb-weaving spider Zygiella x-notata. Anim. Behav. 47: 477–480.CrossRefGoogle Scholar
  58. Perry, G. (1999). The evolution of search modes: Ecological versus phylogenetic perspectives. Am. Nat. 153: 98–109.CrossRefGoogle Scholar
  59. Persons, M. H., and Uetz, G. W. (1996). The influence of sensory information on patch residence time in wolf spiders (Araneae: Lycosidae). Anim. Behav. 51: 1285–1293.CrossRefGoogle Scholar
  60. Prado, P. I. K. L., Bede, L. C., and de Faria, M. L. (1993). Asymmetric competition in a natural population of antlion larvae. Oikos 68: 525–530.CrossRefGoogle Scholar
  61. Pulliam, H. R. (1988). Sources, sinks, and population regulation. Am. Nat. 132: 652–661.CrossRefGoogle Scholar
  62. Rayor, L. S., and Uetz, G. W. (2000). Age-related sequential web building in the colonial spider Metepeira incrassata (Araneidae): An adaptive spacing strategy. Anim. Behav. 59: 1251–1259.PubMedCrossRefGoogle Scholar
  63. Riechert, S. E. (1992). Spiders as representative ‘sit-and-wait' predators. In Crowley, M. J. (ed.), Natural Enemies: The Population Biology of Predators, Parasites and Diseases, Blackwell Scientific Publications, Oxford, pp. 313–328.Google Scholar
  64. Riechert, S. E., and Gillespie, R. G. (1986). Habitat choice and utilization in web-building spiders. In Shear, W. A. (ed.), Spiders: Webs, Behavior and Evolution, Stanford University Press, Stanford, CA, pp. 23–48.Google Scholar
  65. Rosenberg, R. H. (1987). Pit distribution in antlion larvae (Neuroptera: Myrmeleontidae): is competition important? Fla. Entomol. 70: 175–177.CrossRefGoogle Scholar
  66. Rosenzweig, M., and Abramsky, Z. (1997). Two gerbils of the Negev: A long term investigation of optimal habitat selection and its consequences. Evol. Ecol. 11: 733–756.CrossRefGoogle Scholar
  67. Rypstra, A. L. (1985). Aggregations of Nephila clavipes (L.) (Araneae, Araneidae) in relation to prey availability. J. Arachnol. 13: 71–78.Google Scholar
  68. Samu, F., Toft, S., and Kiss, B. (1999). Factors influencing cannibalism in the wolf spider Pardosa agrestis (Aranea, Lycosidae). Behav. Ecol. Sociobiol. 45: 349–354.CrossRefGoogle Scholar
  69. Schmitz, O. J., Krivan, V., and Ovadia, O. (2004). Trophic cascades: The primacy of trait-mediated indirect interactions. Ecol. Lett. 7: 153–163.CrossRefGoogle Scholar
  70. Schmitz, O. J., and Suttle, K. B. (2001). Effects of top predator species on direct and indirect interactions in a food web. Ecology 82: 2072–2081.Google Scholar
  71. Shachak, M., and Brand, S. (1983). The relationship between sit and wait foraging strategy and dispersal in the desert scorpion, Scorpio maurus palmatus. Oecologia 60: 371–377.Google Scholar
  72. Simberloff, D., Dillon, P., King, L., Lorence, D., Lowrie, S., and Schilling, E. (1978). Holes in the doughnut theory: the dispersion of ant-lions. Brenesia 14: 13–46.Google Scholar
  73. Simon, D. (1989). Ant-lions (Neuroptera: Myrmeleontidae) of the coastal plain: systematical, ecological, and zoogeographical aspects with emphasize on the coexistence of a species guild of the unstable dunes, PhD thesis, Tel-Aviv University, Israel.Google Scholar
  74. Smallwood, P. D. (1993). Web-site tenure in the long-jawed spider: is it risk-sensitive foraging, or conspecific interactions? Ecology 74: 1826–1835.CrossRefGoogle Scholar
  75. Topoff, H. (1977). The pit and the antlion. Natural History 86: 65–71.Google Scholar
  76. Uetz, G. W. (1989). The “ricochet effect” and prey capture in colonial spiders. Oecologia 81: 154–159.Google Scholar
  77. Vollrath, F. (1985). Web spider's dilemma: a risky move or site dependent growth. Oecologia 68: 69–72.CrossRefGoogle Scholar
  78. Vollrath, F., and Houston, A. (1986). Previous experience and site tenacity in the orb spider Nephila (Araneae, Araneidae). Oecologia 70: 305–308.Google Scholar
  79. Ward, D., and Lubin, Y. (1993). Habitat selection and the life history of a desert spider, Stegodyphus lineatus (Eresidae). J. Anim. Ecol. 62: 353–363.CrossRefGoogle Scholar
  80. Wheeler, W. M. (1930). Demons of the Dust, Norton, New York, pp. 80–142.Google Scholar
  81. Wilson, D. S. (1974). Prey capture and competition in the ant lion. Biotropica 6: 187–193.CrossRefGoogle Scholar
  82. Youthed, G. J., and Moran, V. C. (1969a). Pit construction by Myrmeleontid larvae. J. Insect Physiol. 15: 867–875.CrossRefGoogle Scholar
  83. Youthed, G. J., and Moran, V. C. (1969b). The lunar-day activity rhythm of Myrmeleontid larvae. J. Insect Physiol. 15: 1259–1271.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Life SciencesBen-Gurion University of the NegevBeer ShevaIsrael
  2. 2.Department of Life SciencesBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations