Skip to main content
Log in

Insect Choice and Floral Size Dimorphism: Sexual Selection or Natural Selection?

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

In considerations of sexual floral size dimorphism, there is a conflict between sexual selection theory, which predicts that larger floral displays attract more pollinators, and optimality theory—particularly the ideal free distribution—which predict that pollinators' visits should match nutritional rewards. As an alternate explanation of this dimorphism, Müller reported that pollinators tend to visit larger male flowers before visiting smaller female flowers, thereby promoting effective pollination. To investigate optimality predictions, I offered pollinators a choice between smaller, less numerous, but more rewarding flowers; and larger, more numerous, but less rewarding flowers. Foragers initially favored the larger and more numerous flowers, but rapidly shifted preferences to conform with the predictions of the ideal free distribution. To test Müller's hypothesis, I offered pollinators choices between larger and smaller corollas of equal caloric reward. Results showed that although pollinators tended to visit larger corollas first, they did not visit them more often. These experiments highlight the need for further investigation into the tradeoff between natural and sexual selection, and their respective influences in pollination ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham, J. N. (1996). La saboteuse: An ecological theory of sexual dimorphism in animals. Acta Biotheor. 46: 23–35.

    Google Scholar 

  • Agren, J., Elmqvist, T., and Tunlid, A. (1986). Pollination by deceit, floral sex ratios and seed set in dioecious Rubus chamaemorus L. Oecologia 70: 332–338.

    Google Scholar 

  • Andersson, S. (1991). Floral display and pollination success in Achillea ptarmica (Asteraceae). Hol. Ecol. 14: 186–191.

    Google Scholar 

  • Anderson, G. J., and Symon, D. E. (1989). Functional dioecy and andromonoecy in Solanum. Evolution 43: 204–219.

    Google Scholar 

  • Arnold, S. J. (1994). Supplement: Sexual selection in plants and animals, a symposium organized by Stevan J. Arnold. Am. Nat. 144: S1–S149.

    Google Scholar 

  • Ashman, T. L., and Stanton, M. L. (1991). Seasonal variation in pollination dynamics of sexually dimorphic Sidalcea oregana ssp. spicata (Malvaceae). Ecology 72: 993–1003.

    Google Scholar 

  • Baker, H. G. (1948). Corolla size in gynodioecious and gynomonoecious species of flowering plants. Proc. Leeds Phil. Lit. Soc. 5: 136–139.

    Google Scholar 

  • Bawa, K. S. (1980a). Mimicry of male by female flowers and intrasexual competition for pollinators in Jacaratia dolichaula (D. Smith) Woodson (Caricaceae). Evolution 34: 467–474.

    Google Scholar 

  • Bawa, K. S. (1980b). Evolution of dioecy in flowering plants. Ann. Rev. Ecol. Syst. 11: 15–39.

    Article  Google Scholar 

  • Beach, J. H. (1981). Pollinator foraging and the evolution of dioecy. Am. Nat. 118: 572–577.

    Article  Google Scholar 

  • Bell, G. (1985). On the function of flowers. Proc. R. Soc. Lond. B 224: 223–265.

    Article  Google Scholar 

  • Bell, G., Lefebvre, L., Giraldeau, L.-A., and Weary, D. (1984). Partial preference of insects for the male flowers of an annual herb. Oecologia 65: 287–294.

    Google Scholar 

  • Broyles, S. B., and Wyatt, R. (1995). A reexamination of the pollen-donation hypothesis in an experimental population of Asclepias exaltata. Evolution 49: 89–99.

    Google Scholar 

  • Broyles, S. B., and Wyatt, R. (1997). The pollen donation hypothesis revisited: A response to Queller. Am. Nat. 149: 595–599.

    Article  Google Scholar 

  • Butler, C. G. (1945). The influence of various physical and biological factors of the environment on honey bee activity. An examination of the relationship between activity and nectar concentration and abundance. J. Exp. Biol. 21: 5–12.

    Google Scholar 

  • Campbell, D. R. (1989). Inflorescence size: A test of the male function hypothesis. Am. J. Bot. 76: 730–738.

    Google Scholar 

  • Campbell, D. R., Waser, N. M., Price, M. V., Lynch, E. A., and Mitchell, R. J. (1991). Components of phenotypic selection: Pollen export and flower corolla width in Ipomopsis aggregata. Evolution 45: 1458–1467.

    Google Scholar 

  • Chaplin, S. J., and Walker, J. L. (1982). Energetic constraints and adaptive significance of the floral display of a forest milkweed. Ecology 63: 1857–1870.

    Google Scholar 

  • Comba, L., Corbet, S. A., Barron, A., Bird, A., Collinge, S., Miyazaki, N., and Powell, M. (1999). Garden flowers: insect visits and the floral reward of horticulturally-modified variants. Ann. Bot. 83: 73–86.

    Google Scholar 

  • Conner, J. K., and Rush, S. (1996). Effects of flower size and number on pollinator visitation to wild radish, Raphanus raphanistrum. Oecologia 104: 409–516.

    Google Scholar 

  • Corbet, S. A., Cuthill, I., Fallows, M., Harrison, T., and Hartley, G. (1981). Why do nectar-foraging bees and wasps work upwards on inflorescences? Oecologia 51: 79–83.

    Google Scholar 

  • Dafni, A. (1984). Mimicry and deception in pollination. Ann. Rev. Ecol. Syst. 15: 359–378.

    Article  Google Scholar 

  • Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. J. Murray, London.

    Google Scholar 

  • Darwin, C. (1871). The Descent of Man and Selection in Relation to Sex. J. Murray, London.

    Google Scholar 

  • Darwin, C. (1888). The Different Forms of Flowers on Plants of the Same Species, University of Chicago Press, Chicago.

    Google Scholar 

  • Delph, L. F., and Lively, C. M. (1992). Pollinator visitation, floral display, and nectar production of the sexual morphs of a gynodioecious shrub. Oikos 63: 161–170.

    Google Scholar 

  • Devlin, B., and Stephenson, A. G. (1985). Sex differential floral longevity, nectar secretion, and pollinator foraging in a protandrous species. Am. J. Bot. 72: 303–310.

    Google Scholar 

  • Dreisig, H. (1995). Ideal free distributions of nectar foraging bumblebees. Oikos 72: 161–172.

    Google Scholar 

  • Eckhart, V. M. (1991). The effects of floral display on pollinator visitation vary among populations of Phacelia linearis (Hydrophyllaceae). Evol. Ecol. 5: 370–384.

    Article  Google Scholar 

  • Emms, S. K., Stratton, D. A., and Snow, A. A. (1997). The effect of inflorescence size on male fitness: experimental tests in the andromonoecious lily, Zigadenus paniculatus. Evolution 51: 1481–1489.

    Google Scholar 

  • Faegri, K., and van der Pijl, L. (1979). The Principles of Pollination Ecology, 3rd revised ed. Pergamon, Oxford.

    Google Scholar 

  • Fisher, R. A. (1915). The evolution of sexual preference. Eugen. Rev. 7: 184–192.

    Google Scholar 

  • Fisher, R. A. (1958). The Genetical Theory of Natural Selection, Dover, New York.

    Google Scholar 

  • Firmage, D. H., and Cole, F. R. (1988). Reproductive success and inflorescence size of Calopogon tuberosus (Orchidaceae). Am. J. Bot. 75: 1371–1377.

    Google Scholar 

  • Frankie, G. W., and Haber, W. A. (1983). Why bees move among mass flowering neotropical trees. In Jones, C. E., and Little, R. J. (eds.), Handbook of Experimental Pollination Biology. Scientific and Academic Editions, New York, pp. 360–372.

  • Free, J. B. (1968). Dandelion as a competitor to fruit trees for bee visits. J. Appl. Ecol. 5: 169–178.

    Google Scholar 

  • Grant, K. (1966). A hypothesis concerning the prevalence of red coloration in California hummingbird flowers. Am. Nat. 100: 85–97.

    Google Scholar 

  • Grant, K. (1995). Sexual selection in plants: Pros and cons. Proc. Nat. Acad. Sci. USA 92: 1247–1250.

    PubMed  CAS  Google Scholar 

  • Harder, L. D., and Cruzan, M. B. (1990). An evaluation of the physiological and evolutionary influences of inflorescence size and flower depth on nectar production. Funct. Ecol. 4: 559–572.

    Google Scholar 

  • Harder, L. D., Thomson, J. D., Cruzan, M. B., and Unnasch, R. S. (1985). Sexual reproduction and variation in floral morphology in an ephemeral vernal lily, Erythronium americanum. Oecologia 67: 286–291.

    Article  Google Scholar 

  • Haynes, J. G., and Mesler, M. (1984). Pollen foraging by bumblebees: Foraging patterns and efficiency of Lupinus polyphyllus. Oecologia 61: 249–253.

    Article  Google Scholar 

  • Heinrich, B. (1975). Energetics of pollination. Ann. Rev. Ecol. Syst. 6: 139–170.

    Article  Google Scholar 

  • Heinrich, B. (1976). The foraging specializations of individual bumblebees. Ecol. Mon. 46: 105–128.

    Google Scholar 

  • Heinrich, B. (1983). Insect foraging energetics. In Jones, C. E., and Little, R. J. (eds.), Handbook of Experimental Pollination Biology. Scientific and Academic Editions, New York, pp. 187–214.

  • Huxley, J. S. (1938). Darwin's theory of sexual selection and the data subsumed by it, in the light of recent research. Am. Nat. 72: 416–433.

    Article  Google Scholar 

  • Janzen, D. H. (1971). Euglossine bees as long distance pollinators of tropical plants. Science 171: 203–205.

    PubMed  Google Scholar 

  • Janzen, D. H. (1977). A note on optimal mate selection by plants. Am. Nat. 111: 365–371.

    Google Scholar 

  • Kaplan, S. M., and Mulcahy, D. L. (1971). Mode of pollination and floral sexuality in Thalictrum. Evolution 25: 659–668.

    Google Scholar 

  • Kay, Q. O. N., Lack, A. J., Bamber, F. C., and Davies, C. R. (1984). Differences between sexes in floral morphology, nectar production and insect visits in a dioecious species. Silene dioica. New Phytol. 98: 515–529.

    Google Scholar 

  • Krebs, J. R., and Davies, N. B. (1993) An Introduction to Behavioural Ecology, Blackwell Scientific, Oxford.

    Google Scholar 

  • Lloyd, D. G., and Webb, C. J. (1977). Secondary sex characters in plants. Bot. Rev. 43: 177–216.

    Google Scholar 

  • Lyons, E. E., Waser, N. M., Price, M. V., Antonovics, J., and Motten, A. F. (1989). Sources of variation in plant reproductive success and implications for concepts of sexual selection. Am. Nat. 134: 409–433.

    Article  Google Scholar 

  • Maynard Smith, J. (1991). Theories of sexual selection. Trends Ecol. Evol. 6: 146–151.

    Google Scholar 

  • McGregor, S. E., Alcorn, S. M., Kurtz, E. G. Jr., and Butler, G. D. Jr. (1959). Bee visitors to saguaro flowers. J. Econ. Entom. 52: 1002–1004.

    Google Scholar 

  • Mitchell, R. J. (1993). Adaptive significance of Ipomopsis aggregata nectar production: Observation and experiment in the field. Evolution 47: 25–35.

    Google Scholar 

  • Miyake, T., and Yafuso, M. (2003). Floral scents affect reproductive success in fly-pollinated Alocasia odora (Araceae). Am. J. Botany 90: 370–376.

    Google Scholar 

  • Müller, H. (1873). Ground ivy. Nature 8: 161–162.

    Google Scholar 

  • Nakamura, R. R., Stanton, M. L., and Mazer, S. J. (1989). Effects of mate size and mate number on male reproductive success in plants. Ecology 70: 71–76.

    Google Scholar 

  • Pleasants, J. M. (1981). Bumblebee response to variation in nectar availability. Ecology 62: 1648–1661.

    Google Scholar 

  • Poldolsky, R. D. (1993). Evolution of a flower dimorphism: How effective is pollen dispersal by “male” flowers? Ecology 74: 2255–2260.

    Google Scholar 

  • Primack, R. B. (1987). Relationships among flowers, fruits, and seeds. Ann. Rev. Ecol. Syst. 18: 409–430.

    Article  Google Scholar 

  • Pyke, G. H. (1978). Optimal foraging: Movement patterns of bumblebees between inflorescences. Theor. Pop. Biol. 13: 72–98.

    Article  CAS  Google Scholar 

  • Pyke, G. H. (1982). Foraging in bumblebees: Rule of departure from an inflorescence. Canadian J. of Zool. 60: 417–428.

    Google Scholar 

  • Pyke, G. H., Pulliam, H. R., and Charnov, E. L. (1977). Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52: 137–154.

    Article  Google Scholar 

  • Queller, D. C. (1983). Sexual selection in a hermaphroditic plant. Nature 305: 706–707.

    Article  Google Scholar 

  • Ryan, M. J., and Rand, A. S. (1990). The sensory basis of sexual selection for complex calls in the túngara frog, Physalae mus pustulosus (sexual selection for sensory exploitation). Evolution 44: 305–314.

    Google Scholar 

  • Spaethe, J., Tautz, J., and Chittka, L. (2001). Visual constraints in foraging bumblebees: Flower size and color affect search time and flight behavior. Proc. Nat. Acad. Sci. 98: 3898–3903.

    Article  PubMed  CAS  Google Scholar 

  • Stanton, M. L., Young, H. J., Ellstrand, N. C., and Clegg, J. M. (1991). Consequences of floral variation for male and female reproduction in experimental populations of wild radish, Raphanus sativus L. Evolution 45: 268–280.

    Google Scholar 

  • Stanton, M. L., Ashman, T.-L., Galloway, L. F., and Young, H. J. (1992). Estimating male fitness of plants in natural populations. In Wyatt, R. (ed.), Ecology and Evolution of Plant Reproduction, Chapman& Hall, New York, pp. 62–90.

    Google Scholar 

  • Stephenson, A. G., and Bertin, R. I. (1983). Male competition, female choice, and sexual selection in plants. In Real, L. (ed.), Pollination Biology, Academic Press, New York, pp. 110–149.

    Google Scholar 

  • Sutherland, S., and Delph, L. F. (1984). On the importance of male fitness in plants: Patterns of fruit set. Ecology 65: 1093–1104.

    Google Scholar 

  • Thomson, J. D., and Plowright, R. C. (1980). Pollen carryover, nectar rewards, and pollinator behavior with special reference to Diervilla lonicera. Oecologia 46: 68–74.

    Article  Google Scholar 

  • Thomson, J. D., Maddison, W. P., and Plowright, R. C. (1982). Behavior of bumble bee pollinators of Aralia hispida Vent. (Araliaceae). Oecologia 54: 326–336.

    Article  Google Scholar 

  • Thomson, J. D., McKenna, M. A., and Cruzan, M. B. (1989). Temporal patterns of nectar and pollen production in Aralia hispida: Implications for reproductive success. Ecology 70: 1061–1068.

    Google Scholar 

  • Waddington, D., and Heinrich, B. (1979). The foraging movements of bumblebees on vertical inflorescences: An experimental analysis. J. Comp. Physiol. 134: 113–117.

    Article  Google Scholar 

  • Wainselboim, A. J., Roces, F., and Farina, W. M. (2002). Honeybees assess changes in nectar flow within a single foraging bout. Animal Behav. 63: 1–6.

    Google Scholar 

  • Willson, M. F. (1979). Sexual selection in plants. Am. Nat. 113: 777–790.

    Article  Google Scholar 

  • Willson, M. F. (1990). Sexual selection in plants and animals. Trends Ecol. Evol. 5: 210–214.

    Article  Google Scholar 

  • Willson, M. F. (1991). Sexual selection, sexual dimorphism and plant phylogeny. Evol. Ecol. 5: 69–87.

    Google Scholar 

  • Willson, M. F. (1994). Sexual selection in plants: Perspective and overview. Am. Nat. 144: S13–S39.

    Article  Google Scholar 

  • Willson, M. F., and Rathcke, B. J. (1974). Adaptive design of the floral display in Asclepias syriaca L. Am. Mid. Nat. 92: 47–57.

    Google Scholar 

  • Wilson, P., Thomson, J. D., Stanton, M. L., and Rigney, L. P. (1994). Beyond floral Batemania: Gender biases in selection for pollination success. Am. Nat. 143: 283–296.

    Article  Google Scholar 

  • Young, H. J., and Stanton, M. L. (1990). Influences of floral variation on pollen removal and seed production in wild radish. Ecology 71: 536–547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph N. Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, J.N. Insect Choice and Floral Size Dimorphism: Sexual Selection or Natural Selection?. J Insect Behav 18, 743–756 (2005). https://doi.org/10.1007/s10905-005-8737-1

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-005-8737-1

Keywords

Navigation