Skip to main content
Log in

DFT Study of Structural, Electronic, Magnetic and Thermodynamic properties of XMnZ2 (X = Au, Hg, and Tl, Z = S, Se) Delafossites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, we present a comprehensive exploration of the Delafossite composites using density functional theory (DFT) and the semi-classical Boltzmann simulations within the Wien2k framework. Our investigation includes structural, electronic, magnetic and thermal properties in the tetragonal phase, providing a holistic understanding of these materials. Firstly, the structural-magnetic stability of XMnZ2 (X = Au, Hg, and Tl, Z = S, Se) was verified through ground-state energy calculations obtained from structural optimizations. Our results indicate a stable ferromagnetic phase for the six compounds. Moving on to electronic properties, we utilize the Trans-Blaha modified Becke Johnson (TB-mBJ) functional potential to elucidate the electronic behavior (metallic, half metallic, semiconductor or insolating) of the considered compounds in both up and down spin directions. Furthermore, spin-polarized band structures unveil a net magnetism in the range of 2.67µB to 4.02µB, highlighting the potential for spintronics applications. Finally, we investigate the thermodynamic properties using the quasi-harmonic model, where heat capacities at constant pressure and volume, entropy, Debye temperature, and thermal expansion coefficient are analyzed and discussed under both pressure and temperature effects. Overall our study provides a comprehensive understanding of the multifaceted properties of Delafossites, paving the way for their potential applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the associated data with this study is present in the manuscript.

5. References

  1. G. Meagen, Metal oxide-based transparent conducting oxides (2006). https://doi.org/10.31274/rtd-180813-16475

  2. S.K. Maurya, H.R. Galvan, G. Gautam, X. Xu, Recent Progress in Transparent Conductive Materials for Photovoltaics. Energies 15, 8698 (2022). https://doi.org/10.3390/en15228698

    Article  CAS  Google Scholar 

  3. R. Woods-Robinson, Y. Han, H. Zhang, T. Ablekim, I. Khan, K. Persson, A. Zakutayev, Wide band gap chalcogenide semiconductors. (2020)

  4. A.H. Asmaa, H.K. El-Bassuony, W.M. Abdelsalam, Gamal, Influence of Elastic and Optical Properties on AgFeO2 and AgCrO2 Delafossite to be Applied in High-Frequency Applications. JOM 74, 2656–2664 (2022). https://doi.org/10.1007/s11837-022-05170-x

    Article  CAS  Google Scholar 

  5. C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method, (2004). http://arxiv.org/abs/cond-mat/0402523 (accessed March 21, 2023).

  6. U. Zimmermann, design, processing and characterization of silicon carbide diodes, mikroelektronik och informationsteknik. ISRN KTH/FTE/FR-2003/1-SE.  116, xii (2003)

  7. H.N. Abdelhamid, Delafossite Nanoparticle as New Functional Materials: Advances in Energy, Nanomedicine and Environmental Applications. Mater. Sci. Forum 832, 28–53 (2015). https://doi.org/10.4028/www.scientific.net/MSF.832.28

    Article  Google Scholar 

  8. K. Ismail, G. Murtaza, S. Tahir, G. Nazir, N.A. Kattan, H. Albalawi, B.U. Haq, M. Morsi, Theoretical study of electronic, magnetic, optical and thermoelectric properties of XMnO2 (X=Au, Ag, Cu) oxides by DFT. J. Solid State Chem. 314, 123432 (2022). https://doi.org/10.1016/j.jssc.2022.123432

    Article  CAS  Google Scholar 

  9. M. Moreira, J. Afonso, J. Crepelliere, D. Lenoble, P. Lunca-Popa, A review on the p-type transparent Cu–Cr–O delafossite materials. J. Mater. Sci. 57, 3114–3142 (2022). https://doi.org/10.1007/s10853-021-06815-z

    Article  CAS  Google Scholar 

  10. J. Shi, T.F.T. Cerqueira, W. Cui, F. Nogueira, S. Botti, M.A.L. Marques, High-throughput search of ternary chalcogenides for p-type transparent electrodes. Sci. Rep. 7, 43179 (2017). https://doi.org/10.1038/srep43179

    Article  PubMed  PubMed Central  Google Scholar 

  11. M. Khedidji, F. Saib, M. Trari, Combined experimental and first-principles investigation of the delafossite structure AgCoO2. Vacuum 222, 113099 (2024). https://doi.org/10.1016/j.vacuum.2024.113099

    Article  CAS  Google Scholar 

  12. M. Khedidji, F. Saib, O. Mahroua, M. Trari, The structural, electronic, magnetic, optical and vibrational properties of the delafossite CuAlO2: DFT calculations and experimental study. J. Mater. Sci. Mater. Electron. 33, 26474–26483 (2022). https://doi.org/10.1007/s10854-022-09326-y

    Article  CAS  Google Scholar 

  13. E.-H. Lee, E.-B. Kim, M.S. Akhtar, S. Ameen, Delafossite CuCrO2 nanoparticles as possible electrode material for electrochemical supercapacitor. Ceram. Int. 48, 16667–16676 (2022). https://doi.org/10.1016/j.ceramint.2022.02.213

    Article  CAS  Google Scholar 

  14. M.E. Ketfi, S.S. Essaoud, S. Al Azar, A.Y. Al-Reyahi, A.A. Mousa, A. Mufleh, Insight into the spin-polarized structural, optoelectronic, magnetic, thermodynamic, and thermoelectric properties of PdBO2 (B = Al, Cr, and Rh) Delafossite semiconductor. Opt. Quantum Electron. 55, 1013 (2023). https://doi.org/10.1007/s11082-023-05259-w

    Article  CAS  Google Scholar 

  15. A. Bouich, J.C. Torres, H. Chfii, J. Marí-Guaita, Y.H. Khattak, F. Baig, B.M. Soucase, P. Palacios, Delafossite as hole transport layer a new pathway for efficient perovskite-based solar sells: Insight from experimental, DFT and numerical analysis. Sol. Energy 250, 18–32 (2023). https://doi.org/10.1016/j.solener.2022.12.022

    Article  CAS  Google Scholar 

  16. N. Zhang, J. Sun, H. Gong, Transparent p-Type Semiconductors: Copper-Based Oxides and Oxychalcogenides. Coatings 9, 137 (2019). https://doi.org/10.3390/coatings9020137

    Article  CAS  Google Scholar 

  17. Q. Chen, N. De Marco, Y.M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015). https://doi.org/10.1016/j.nantod.2015.04.009

    Article  CAS  Google Scholar 

  18. S. Hebert, W. Kobayashi, H. Muguerra, Y. Bréard, N. Raghavendra, F. Gascoin, From oxides to selenides and sulfides: The richness of the CdI2 type crystallographic structure for thermoelectric properties. Phys. Status Solidi A 210, 69–81 (2013). https://doi.org/10.1002/pssa.201228505

    Article  CAS  Google Scholar 

  19. S. Hebert, D. Berthebaud, R. Daou, Y. Bréard, D. Pelloquin, F. Gascoin, O. Lebedev, A. Maignan, Searching for New Thermoelectric Materials: Some Examples Among Oxides, Sulfides and Selenides. J. Phys. Condens. Matter Inst. Phys. J. 28, 013001 (2015). https://doi.org/10.1088/0953-8984/28/1/013001

    Article  CAS  Google Scholar 

  20. B. Marsen, S. Klemz, T. Unold, H. Schock, Investigation of the Sub-Bandgap Photoresponse in CuGaS 2: Fe for Intermediate Band Solar Cells. Prog. Photovolt. Res. Appl. 20, 625–629 (2012). https://doi.org/10.1002/pip.1197

    Article  CAS  Google Scholar 

  21. J. Marquardt, Structure property relations in chalcopyrite based intermediate band solar absorber materials, PhD Thesis, (2019). https://refubium.fu-berlin.de/handle/fub188/23801 (accessed April 23, 2024).

  22. D. Naveena, L. Thirumalaisamy, R. Dhanabal, K. Sethuraman, A.C. Bose, Tuning the Properties of the CuAl (1–X)FeXS2 Thin Film as a Potential Absorber for Solar Cell Application. ACS Appl. Energy Mater. 3, 10550–10559 (2020). https://doi.org/10.1021/acsaem.0c01608

    Article  CAS  Google Scholar 

  23. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020). https://doi.org/10.1063/1.5143061

    Article  CAS  PubMed  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  25. A.D. Becke, E.R. Johnson, A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006). https://doi.org/10.1063/1.2213970

    Article  CAS  PubMed  Google Scholar 

  26. A. Otero-de-la-Roza, V. Luaña, Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput. Phys. Commun. 182, 1708–1720 (2011). https://doi.org/10.1016/j.cpc.2011.04.016

    Article  CAS  Google Scholar 

  27. A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 182, 2232–2248 (2011). https://doi.org/10.1016/j.cpc.2011.05.009

    Article  CAS  Google Scholar 

  28. C.G. Broyden, The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations. IMA J. Appl. Math. 6, 76–90 (1970). https://doi.org/10.1093/imamat/6.1.76

    Article  Google Scholar 

  29. C.G. Broyden, The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA J. Appl. Math. 6, 222–231 (1970). https://doi.org/10.1093/imamat/6.3.222

    Article  Google Scholar 

  30. G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  CAS  Google Scholar 

  31. M.E. Ketfi, S.S. Essaoud, S.M. Al Azar, A.Y. Al-Reyahi, A.A. Mousa, N. Al-Aqtash, Mechanical, magneto-electronic and thermoelectric properties of Ba 2 MgReO 6 and Ba 2 YMoO 6 based cubic double perovskites: an ab initio study. Phys. Scr. 99, 015908 (2024). https://doi.org/10.1088/1402-4896/ad1021

    Article  Google Scholar 

  32. S. SâadEssaoud, A. Bouhemadou, M.E. Ketfi, D. Allali, S. Bin-Omran, Structural parameters, electronic structure and linear optical functions of LuXCo2Sb2 (X = V, Nb and Ta) double half Heusler alloys. Phys. B Condens. Matter 657, 414809 (2023). https://doi.org/10.1016/j.physb.2023.414809

    Article  CAS  Google Scholar 

  33. S. SaadEssaoud, A. Bouhemadou, D. Allali, M.E. Ketfi, M. Radjai, S. Bin-Omran, An Ab Initio Investigation of the Structural Stability, Thermodynamic, Optoelectronic, and Thermoelectric Properties of LuXNi2Sn2 (X = V, Nb, Ta) Double Half Heusler Materials. J. Inorg. Organomet. Polym. Mater. 34, 885–902 (2024). https://doi.org/10.1007/s10904-023-02881-9

    Article  CAS  Google Scholar 

  34. MM. Petit, Dulong, XLIV. Researches on some important points of the theory of heat. The Philosophical Magazine and Journal: Comprehending the Various Branches of Science. the Liberal and Fine Arts. 267–275 (1819). https://doi.org/10.1080/14786441908652225

  35. S. SaadEssaoud, A. Bouhemadou, M. Radjai, M. ElaminKetfi, D. Allali, S. Bin-Omran, S. Maabed, First-principles analysis of the structural, thermodynamic, elastic and thermoelectric properties of LuXCo2Sb2 (X = V, Nb and Ta) double half Heusler alloys. Inorg. Chem. Commun. 159, 111733 (2024). https://doi.org/10.1016/j.inoche.2023.111733

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Mohammed Elamin Ketfi: Conceptualization, Methodology, Formal analysis, Writing and Investigation, Saber Saad Essaoud: Verification, Supervision, Visualization, Conceptualization. Writing, Said Al Azar: Verification, Supervision, Visualization and Writing, Anas Y. Al-Reyahi: Supervision, Visualization,.

Corresponding author

Correspondence to Mohammed Elamin Ketfi.

Ethics declarations

Ethical Approval

There is no ethical approval required for this research work.

Competing Interests

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketfi, M.E., Essaoud, S.S., Al Azar, S. et al. DFT Study of Structural, Electronic, Magnetic and Thermodynamic properties of XMnZ2 (X = Au, Hg, and Tl, Z = S, Se) Delafossites. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03142-z

Keywords

Navigation