Skip to main content
Log in

State of Art in Lead Free Double Perovskite Ceramics, X2MgTeO6 (X = Sr, Ba): Structural Stability and their Potential Energy Harvesting Applications

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present first principles calculations regarding lead-free double perovskite ceramics X2MgTeO6 (X = Sr, Ba) have discovered their structural, thermal, and thermodynamic stability in the rock-salt phase. The lattice constants were calculated to be in close agreement with experimental values. The dynamical properties were explored in terms of phonon dispersion spectra, vibrational internal energy, Debye temperature, vibrational Helmholtz free energy, lattice thermal conductivity, specific heat, and vibrational entropy. It was found that both perovskites follow the Dulong-Petit law at high temperatures and Debye’s law at low temperatures. The electronic properties revealed the direct band gap nature of both double perovskites, with band gap values of 3.18 eV for Sr2MgTeO6 and 2.42 eV for Ba2MgTeO6. The optical properties predicted that the most active absorption occurs in the ultra violet (UV) region with an absorption coefficient greater than 105 cm−1. Therefore, the X2MgTeO6 double perovskites are proposed for optoelectronic devices operating in the UV region. The positive values of the Seebeck coefficients indicate the p-type conductivity in both ceramics. The values of the figure of merit (0.609 for Sr2MgTeO6 and 0.594 for Ba2MgTeO6 at 800 K) suggest that both ceramics are suitable for thermoelectric-based applications at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nano Lett. 15, 3692–3696 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photo. 8, 506 (2014)

    Article  CAS  Google Scholar 

  3. W.J. Yin, T. Shi, Y. Yan, Adv. Mater. 26, 4653–4658 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Science 347, 519–522 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. A. Miyata A. Mitioglu, P. Plochocka, O. Portugall, J. T. W. Wang, S. D. Stranks, H.J. Snaith, R. J. Nicholas, Nat. Phys. 11 (2015) 582

  6. A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Science 354, 92–95 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun, Adv. Mater. 27, 7101–7108 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. L. Dou, Y. Yang, J. You, Z. Hong, W.H. Chang, G. Li, Y. Yang, Nat. Comm. 5, 5404 (2014)

    Article  CAS  Google Scholar 

  9. J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 27, 7162–7167 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. K. Dave, F. Mu-Huai, Z. Bao, F. Hong-Ting, L. Ru-Shi, Chemistry-An Asian Journal 15, 242–252 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. S. Thawarkar, S.R. Rondiya, N.Y. Dzade, N. Khupse, S. Jadkar, Chemistry-A European Journal 27, 7408–7417 (2021)

    Article  CAS  PubMed  Google Scholar 

  12. M. Berber, N.E. Bouzouira, M. Mebrek, H. Abid, A. Boudali, Appl. Phys. A 126, 864 (2020)

    Article  CAS  Google Scholar 

  13. A. Harbi, A. Aziz, M. Moutaabbid, Inorg. Chem. Commun. 153, 110842 (2023)

    Article  CAS  Google Scholar 

  14. S. Vasala, M. Karppinen, Prog. Solid State Chem. 43, 1–36 (2015)

    Article  CAS  Google Scholar 

  15. S. Alnujaim, A. Bouhemadou, M. Chegaar, A. Guechi, S. Bin-Omran, R. Khenata, Y. Al-Douri, W. Yang, H. Lu, Eur. Phys. J. B. 95, 114 (2022)

    Article  CAS  Google Scholar 

  16. M.A. Hadi, Md. Nurul Islam, J. Podder, RSC Adv. 12, 15461 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L. Zhang, Y. Fang, L. Sui, J. Yan, K. Wang, K. Yuan, W.L. Mao, Bo Zou. ACS Energy Lett. 4, 2975–2982 (2019)

    Article  CAS  Google Scholar 

  18. N.J. Suraja, A. Mahesh, K.S. Sibi, S. Ganesanpotti, J. Alloy. Compd. 865, 158902 (2021)

    Article  CAS  Google Scholar 

  19. B. Manoun, Y. Tamraoui, P. Lazor, W. Yang, Appl. Phys. Lett. 103, 261908 (2013)

    Article  Google Scholar 

  20. L. Zhao, P. Xu, F. Fan, Y. Yu, Y. Shang, T. Li, L. Huang, R. Yu, J. Lumin. 207, 520 (2019)

    Article  CAS  Google Scholar 

  21. J. Liang, S. Zhao, X. Yuan, Z. Li, Opt. Laser Technol. 101, 451 (2018)

    Article  CAS  Google Scholar 

  22. B. Deng, J. Yang, J. Liu, J. Chen, F. Zeng, H. Wang, IOP Conference series: Earth and Environmental Science 634, 012032 (2021)

    Google Scholar 

  23. A.W. Sleight, R. Ward, Inorg. Chem. 3, 292 (1964)

    Article  CAS  Google Scholar 

  24. M.A. Haddouch, A. Abbassi, Y. Ahrabil, H. Labrim, Y. Tamraoui, F. Miriniou, A. Benyoussef, L. Laanab, S. Benmokhtar, Journal of Applied Surface and Interface 1, 1–6 (2017)

    Google Scholar 

  25. A. Das, G. Subodh, M.T. Sebastian, M.M. Lage, R.L. Moreir, Chem. Mater. 20, 4347–4355 (2008)

    Article  Google Scholar 

  26. M.Z. Halizan, Z. Mohamed, Materials 15, 4363 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. B. Manoun, Y. Tamraouli, I. Saadoune, P. Lazor, W. Yang, J. Alami, Mater. Res. Express 4, 105018 (2017)

    Article  Google Scholar 

  28. F.I.H. Alias, M.F. Maulud, Z. Mohamed, A.I.P. Conf, Proc. 2368, 030001 (2021)

    CAS  Google Scholar 

  29. Bayer, J. Am. Ceram. Soc. 46, 604–605 (1963)

    Article  CAS  Google Scholar 

  30. R. Ubic, S. Letournean, S. Thomas, S. Subodh, M.T. Sebastian, J. Aust. Ceram. Soc. 47, 49–56 (2011)

    CAS  Google Scholar 

  31. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)

    Article  CAS  Google Scholar 

  32. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  33. M. Saeed, I.U. Haq, A.S. Saleemi, S.U. Rehman, B.U. Haq, A.R. Chaudhry, I. Khan, J. Phys. Chem. Solids 160, 110302 (2022)

    Article  CAS  Google Scholar 

  34. J.P. Perdew, K. Burke, W. Yue, Phys. Rev. B 54, 16533 (1996)

    Article  CAS  Google Scholar 

  35. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  PubMed  Google Scholar 

  36. N. Erum, M.A. Iqbal, Mater. Res. Express 4, 025904 (2017)

    Article  Google Scholar 

  37. M.A. Blanco, E. Francisco, V. Luania, Comput. Phys. Commun. 158, 57 (2004)

    Article  CAS  Google Scholar 

  38. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M. C. Payne Z. Kristallog. 220, 567–570 (2005)

    Article  CAS  Google Scholar 

  39. G.A. Slack, J. Phys. Chem. Solids 34, 321 (1973)

    Article  CAS  Google Scholar 

  40. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  CAS  Google Scholar 

  41. A.H. Reshak, RSC Adv. 6, 72286 (2016)

    Article  CAS  Google Scholar 

  42. W. Chen et al., J. Mater. Chem. C 4, 4414 (2016)

    Article  CAS  Google Scholar 

  43. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Phys. Rev. B 68, 125210 (2003)

    Article  Google Scholar 

  44. X. Jiang, B. Jiang, Y. Liu, J. Lu, C. Zhong, J. Phys. Chem. Lett. 13, 7306–7313 (2022)

    Article  CAS  PubMed  Google Scholar 

  45. Hu. De-Yuan, X.-H. Zhao, T.-Y. Tang, Li-Min Lu, L Li, Li-Ke Gao, Yan-Lin Tang. J. Solid State Chem. 310, 123046 (2022)

    Google Scholar 

  46. Q. Sun, J. Wang, W.J. Yin, Y. Yan, Adv. Mter. 30, 1705901 (2018)

    Article  Google Scholar 

  47. S. Nosé, Chem. Phys. 81, 511–519 (1984)

    Google Scholar 

  48. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. R. Zosiamliana, L. Kima, Z. Mawia, L. Zuala, G. Abdurakhmanov, D.P. Rai, J. Phys. Condens. Matter 36, 065501 (2024)

    Article  Google Scholar 

  50. S.A. Dar, V. Srivastava, U.K. Sakalle, V. Parey, G. Pagare, Mater. Res. Express 4, 106104 (2017)

    Article  Google Scholar 

  51. S. Benlamari, H. Bendjeddou, R. Boulechfar, S.A. Korba, H. Meradji, R. Ahmed, S. Ghemid, R. Khenata, S.B. Omran, Chin. Phys. B 27, 037104 (2018)

    Article  Google Scholar 

  52. N. Erum, M.A. Iqbal, Physica B 525, 60–69 (2017)

    Article  CAS  Google Scholar 

  53. O. Sahnoun, H.B. Benziane, M. Sahnoun, M. Driz, C. Daul, Comp. Mater. Sci. 77, 316 (2013)

    Article  CAS  Google Scholar 

  54. S.A. Khandy, I. Islam, A. Laref, M. Gogolin, A.K. Hafiz, M.A. Siddiqui, Int. J. Energy Res. 44, 2594 (2020)

    Article  CAS  Google Scholar 

  55. M. A. Ali, M. M. Saad H. –E., A. M. Tighezza, S. Khattak, S. Al-Qaisi, M. Faizan, (2023) Journal of Inorganic and Organometallic Polymers and Materials, https://doi.org/10.1007/s10904-023-02901-8

  56. S.A. Aldaghfag, A. Aziz, A. Younas, M. Yaseen, A. Murtaza, H.H. Hegazy, J. Solid State Chem. 312, 123179 (2022)

    Article  CAS  Google Scholar 

  57. P. Verma, C. Singh, P.K. Kamlesh, K. Kaur, A.J. Verma, J. Mol. Model. 29, 23 (2023)

    Article  CAS  Google Scholar 

  58. G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod, I. Khan, M. Zahid, Opt. Mater. 33, 553–557 (2011)

    Article  CAS  Google Scholar 

  59. D.R. Penn, Phys. Rev. 128, 2093 (1962)

    Article  CAS  Google Scholar 

  60. M.U. Din, Q. Ain, M. Yousaf, J. Munir, Mater. Sci. Semicond. Process. 152, 107081 (2022)

    Article  CAS  Google Scholar 

  61. M. Manzoor, M.W. Iqbal, M. Imran, N.A. Noor, A. Mahmood, Y.M. Alanazi, S. Aftab, J. Market. Res. 18, 4775–4785 (2022)

    CAS  Google Scholar 

  62. R. Yadav, A. Srivastava, R. Sharma, J.A. Abraham, S.A. Dar, A.K. Mishra, V. Srivastava, J. Solid State Chem. 313, 123266 (2022)

    Article  CAS  Google Scholar 

  63. F. Aslam, B. Sabir, M. Hassan, Appl. Phys. A 127, 112 (2021)

    Article  CAS  Google Scholar 

  64. J.A. Abraham, R. Sharma, S. Ahmad, A. Dey, Eur. Phys. J. Plus 136, 1091 (2021)

    Article  CAS  Google Scholar 

  65. J. Singh, T. Kaur, A.P. Singh, M. Goyal, K. Kaur, S.A. Khandy, I. Islam, A.A. Wani, R. Krishan, M.M. Sinha, S.S. Verma, Bull. Mater. Sci. 46, 103 (2023)

    Article  CAS  Google Scholar 

  66. I. Ghazal, H. Absike, A. Rachadi, H. Ez-Zahraouy, Optik 260, 169077 (2022)

    Article  CAS  Google Scholar 

  67. A. Aziz, I. Arshad, S.A. Aldaghfag, M. Yaseen, J. Iqbal, M. Ishfaq, M.K. Butt, S. Noreen, H.H. Hegazy, Phys. Status Solidi B 259, 2200074 (2022)

    Article  CAS  Google Scholar 

  68. M.A. Ali, A. Khan, R.A. Alshgari, S. Mohammad, S.A. Khandy, Opt. Quant. Electron. 56, 931 (2024)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Supporting Project Number (RSP2024R243), King Saud University, Riyadh, Saudi Arabia

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MAA: Investigation; visualization; calculations; writing original draft; Methodology; conceptualization; review and editing, Supervision, AAA: calculations; Software; Methodology; Investigation; review and editing; Resources, MM: calculations; Software; Methodology; Investigation; review and editing; Resources, AK: Visualization; review and editing, SAK: calculations; Software MF: Visualization; Software.

Corresponding author

Correspondence to Malak Azmat Ali.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.A., Alothman, A.A., Mohammad, S. et al. State of Art in Lead Free Double Perovskite Ceramics, X2MgTeO6 (X = Sr, Ba): Structural Stability and their Potential Energy Harvesting Applications. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03115-2

Keywords

Navigation