Skip to main content
Log in

A Review on the Recent Development of Carbon Nanotubes (CNTs) Application for Polymeric Mixed-Matrix Membranes: Synthesis, Performance, and Future Challenges

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Membrane technology offers several advantages in comparison to traditional separation methods, including enhanced removal capacity, operational flexibility, and cost-effectiveness. Nevertheless, the widespread adoption of membrane technology is hindered primarily by the issue of membrane fouling. So, this article provides an overview of various techniques employed in the fabrication and modification of nanocomposite membranes, specifically mixed matrix membranes (MMMs) by incorporation of carbon nanotubes (CNTs). This study examines the influence of CNTs on the intrinsic properties of membranes (pore morphology, porosity, pore size, hydrophilicity/hydrophobicity, membrane surface charge, and roughness). Additionally, the performance of membranes is evaluated in terms of flux permeation, contaminant rejection, and anti-fouling and antibacterial capability. Moreover, the long-term operation and leachability of the fabricated membranes were also discussed. Finally, the challenges and future works in developing MMMs with CNTs as nanofillers are discussed. The text offers a comprehensive overview of the interrelationships between fabrication methods, membrane functionality, and membrane efficiency in various water and wastewater treatment processes. It includes a wealth of supporting evidence and illustrative examples to facilitate the reader’s comprehension of these fundamental connections.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

CNT:

Carbon nanotube

SWCNT:

Single-wall CNT

MWCNT:

Multi-wall CNT

CVD:

Chemical vapor deposition

TETA:

Triethylenetetramine

DMAC:

Dimethylacetamide

PVP:

Polyvinyl pyrrolidone

PVDF:

Polyvinylidene fluoride

PPSU:

Polyphenylsulfone

RB19:

Reactive blue 19

DR23:

Direct red 23

MG:

Malachite green

BSA:

Bovine serum albumin

DMF:

Dimethyl formamide

DDA:

Dodecylamine

SEM:

Scanning Electron Microscopy

TMC:

1,3,5-benzenetricarboxylic acid chloride

FTIR:

Fourier Transform Infrared Spectroscopy

PMIA:

Poly(m-phenylene isophthal amide)

MMMs:

Mixed matrix membranes

MO:

Methyl Orange

CR:

Congo red

DMF:

N,N-Dimethyl-formamide

TFC:

Thin film composite

SLS:

Sodium lignosulfonate

NMP:

N-Methyl-2-pyrrolidone

PVC:

Polyvinyl chloride

PSf:

Polysulfone

RO:

Reverse osmosis

PEI:

Polyethyleneimine

PPy:

Polypyrrole

MD:

Membrane distillation

DR16:

Direct Red 16

Ra:

Average plane roughness

TFN:

Thin film nanocomposite

MF:

Microfiltration

UF:

Ultrafiltration

NF:

Nanofiltration

MB:

Methylene blue

LB3R:

Lanasol blue 3R

References

  1. S. Gholami, J.L. Llacuna, V. Vatanpour, A. Dehqan, S. Paziresh, J.L. Cortina, Impact of a new functionalization of multiwalled carbon nanotubes on antifouling and permeability of PVDF nanocomposite membranes for dye wastewater treatment. Chemosphere. 294, 133699 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. J. Zheng, M. Li, K. Yu, J. Hu, X. Zhang, L. Wang, Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property. J. Membr. Sci. 524, 344–353 (2017)

    Article  CAS  Google Scholar 

  3. M.H.D.A. Farahani, V. Vatanpour, A comprehensive study on the performance and antifouling enhancement of the PVDF mixed matrix membranes by embedding different nanoparticulates: clay, functionalized carbon nanotube, SiO2 and TiO2. Sep. Purif. Technol. 197, 372–381 (2018)

    Article  CAS  Google Scholar 

  4. A. Jafari, B. Kamarehi, A. Ghasemi, Data Brief. 19, 2015–2022 (2018). Survey dataset on the performance of combined process of coagulation and ceramic membrane for the removal of reactive black19

  5. M. Zahid, A. Rashid, S. Akram, Z. Rehan, W. Razzaq, A comprehensive review on polymeric nano-composite membranes for water treatment. J. Membr. Sci. Technol. 8(1), 1–20 (2018)

    Article  Google Scholar 

  6. R.K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, Y. Nishina, Graphene oxide: the new membrane material. Appl. Mater. Today. 1(1), 1–12 (2015)

    Article  Google Scholar 

  7. R. Goswami, M. Gogoi, H.J. Borah, P.G. Ingole, S. Hazarika, Biogenic synthesized Pd-nanoparticle incorporated antifouling polymeric membrane for removal of crystal violet dye. J. Environ. Chem. Eng. 6(5), 6139–6146 (2018)

    Article  CAS  Google Scholar 

  8. M. Ulbricht, Advanced functional polymer membranes. Polymer. 47(7), 2217–2262 (2006)

    Article  CAS  Google Scholar 

  9. M. Rao, S. Sircar, Performance and pore characterization of nanoporous carbon membranes for gas separation. J. Membr. Sci. 110(1), 109–118 (1996)

    Article  CAS  Google Scholar 

  10. F. Liu, N.A. Hashim, Y. Liu, M.M. Abed, K. Li, Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375(1–2), 1–27 (2011)

    Article  CAS  Google Scholar 

  11. G.-. Kang, Y.-. Cao, Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review. J. Membr. Sci. 463, 145–165 (2014)

    Article  CAS  Google Scholar 

  12. P. Pal, Chap. 4–Arsenic Removal by Membrane Filtration (Butterworth-Heinemann, Oxford, UK, 2015), pp. 105–177

    Google Scholar 

  13. A. Jafari, A.H. Mahvi, S. Nasseri, A. Rashidi, R. Nabizadeh, R. Rezaee, Ultrafiltration of natural organic matter from water by vertically aligned carbon nanotube membrane. J. Environ. Health Sci. Eng. 13(1), 51 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  14. M. Shakak, R. Rezaee, A. Maleki, A. Jafari, M. Safari, B. Shahmoradi, H. Daraei, S.-M. Lee, Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of Amoxicillin from aqueous solutions. Environ. Technol. Innov. 17, 100529 (2020)

    Article  CAS  Google Scholar 

  15. R. Rezaee, S. Nasseri, A.H. Mahvi, R. Nabizadeh, S.A. Mousavi, A. Maleki, M. Alimohammadi, A. Jafari, H. Borji, Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions. Chem. Eng. Commun. 206(4), 495–508 (2019)

    Article  CAS  Google Scholar 

  16. A. Jafari, S. Nasseri, R. Nabizadeh, S. Mousavi, R. Rezaee, A. Mahvi, Humic acid removal from water using a novel fabricated antifouling carbon nanotube bucky-paper membrane and effect of operating parameters. Glob Nest J. 19, 217–224 (2017)

    Article  CAS  Google Scholar 

  17. R. Rezaee, S. Nasseri, A.H. Mahvi, A. Jafari, M. Safari, B. Shahmoradi, M. Alimohammadi, M. Khazaei, M. Maroosi, Fabrication of ultrathin graphene oxide-coated membrane with hydrophilic properties for arsenate removal from water. J. Adv. Environ. Health Res. 4(3), 169–175 (2016)

    CAS  Google Scholar 

  18. R. Rezaee, S. Nasseri, A.H. Mahvi, R. Nabizadeh, S.A. Mousavi, A. Rashidi, A. Jafari, S. Nazmara, Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water. J. Environ. Health Sci. Eng. 13(1), 61 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  19. R. Ebrahimi, A. Maleki, R. Rezaee, H. Daraei, M. Safari, G. McKay, S.-M. Lee, A. Jafari, Synthesis and application of Fe-Doped TiO 2 nanoparticles for photodegradation of 2, 4-D from aqueous solution. Arab. J. Sci. Eng. 46, 6409–6422 (2021)

    Article  CAS  Google Scholar 

  20. L. Mirshekar, B. Kamarehie, A. Jafari, M. Ghaderpoori, M.A. Karami, S. Sahebi, Performance evaluation of aquaporin forward osmosis membrane using chemical fertilizers as a draw solution. Environ. Prog. Sustain. Energy. 40(3), e13536 (2021)

    Article  CAS  Google Scholar 

  21. J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment. J. Membr. Sci. 479, 256–275 (2015)

    Article  CAS  Google Scholar 

  22. D. Qadir, H. Mukhtar, L.K. Keong, Mixed matrix membranes for water purification applications. Sep. Purif. Reviews. 46(1), 62–80 (2017)

    Article  Google Scholar 

  23. S.R. Mousavi, M. Asghari, N.M. Mahmoodi, Chitosan-wrapped multiwalled carbon nanotube as filler within PEBA thin film nanocomposite (TFN) membrane to improve dye removal. Carbohydr. Polym. 237, 116128 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. A. Mamalis, L. Vogtländer, A. Markopoulos, Nanotechnology and nanostructured materials: trends in carbon nanotubes. Precis. Eng. 28(1), 16–30 (2004)

    Article  Google Scholar 

  25. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35(3), 357–401 (2010)

    Article  CAS  Google Scholar 

  26. J. Che, T. Cagin, I.I.I. Goddard, Thermal conductivity of carbon nanotubes. Nanotechnology. 11(2), 65 (2000)

    Article  CAS  Google Scholar 

  27. H. He, L.A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, C. Pham-Huy, Carbon nanotubes: applications in pharmacy and medicine. BioMed research international, 2013. 2013

  28. P.X. Hou, C. Liu, C. Shi, H.M. Cheng, Carbon nanotubes prepared by anodic aluminum oxide template method. Chin. Sci. Bull., 2012: p. 1–18

  29. P. Darvishi, S.A. Mousavi, A. Mahmoudi, D. Nayeri, A Comprehensive Review on the Removal of Antibiotics from Water and Wastewater Using Carbon Nanotubes: Synthesis, Performance, and Future Challenges (Water Research & Technology, Environmental Science, 2022)

    Google Scholar 

  30. T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature. 358(6383), 220–222 (1992)

    Article  CAS  Google Scholar 

  31. S. Rathinavel, K. Priyadharshini, D. Panda, A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Engineering: B 268, 115095 (2021)

    Article  CAS  Google Scholar 

  32. S. Griger, I. Sands, Y. Chen, Comparison between janus-base nanotubes and carbon nanotubes: a review on synthesis, physicochemical properties, and applications. Int. J. Mol. Sci. 23(5), 2640 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Z. Lu, R. Raad, F. Safaei, J. Xi, Z. Liu, J. Foroughi, Carbon Nanotube based fiber supercapacitor as wearable energy storage. Front. Mater. 6, 138 (2019)

    Article  Google Scholar 

  34. J.P. Gore, A. Sane, Flame synthesis of carbon nanotubes. Carbon Nanotubes-Synthesis Charact. Appl. 1, 16801 (2011)

    Google Scholar 

  35. S.B. Sinnott, R. Andrews, Carbon nanotubes: synthesis, properties, and applications. Crit. Rev. Solid State Mater. Sci. 26(3), 145–249 (2001)

    Article  CAS  Google Scholar 

  36. J.W. Seo, A. Magrez, M. Milas, K. Lee, V. Lukovac, L. Forro, Catalytically grown carbon nanotubes: from synthesis to toxicity. J. Phys. D 40(6), R109 (2007)

    Article  CAS  Google Scholar 

  37. A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono, J.B. Nagy, Synthesis methods of carbon nanotubes and related materials. Materials. 3(5), 3092–3140 (2010)

    Article  PubMed Central  Google Scholar 

  38. F. Danafar, A. Fakhru’l-Razi, M.A.M. Salleh, D.R.A. Biak, Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—A review. Chem. Eng. J. 155(1–2), 37–48 (2009)

    Article  CAS  Google Scholar 

  39. H. Siddique, E. Rundquist, Y. Bhole, L. Peeva, A. Livingston, Mixed matrix membranes for organic solvent nanofiltration. J. Membr. Sci. 452, 354–366 (2014)

    Article  CAS  Google Scholar 

  40. M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A.A. Alomair, A. Pérez, M.S. Rana, Recent progress of fillers in mixed matrix membranes for CO2 separation: a review. Sep. Purif. Technol. 188, 431–450 (2017)

    Article  CAS  Google Scholar 

  41. D.Q. Vu, W.J. Koros, S.J. Miller, Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J. Membr. Sci. 211(2), 311–334 (2003)

    Article  CAS  Google Scholar 

  42. T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32(4), 483–507 (2007)

    Article  CAS  Google Scholar 

  43. C.V. Funk, D.R. Lloyd, Zeolite-filled microporous mixed matrix (ZeoTIPS) membranes: prediction of gas separation performance. J. Membr. Sci. 313(1–2), 224–231 (2008)

    Article  CAS  Google Scholar 

  44. R. Lin, B.V. Hernandez, L. Ge, Z. Zhu, Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. J. Mater. Chem. A 6(2), 293–312 (2018)

    Article  CAS  Google Scholar 

  45. J. Roy, Composite Membrane: Fabrication, Characterization, and Applications, in Handbook of Modern Coating Technologies (Elsevier, 2021), pp. 347–368

  46. Y. Liao, C.-H. Loh, M. Tian, R. Wang, A.G. Fane, Progress in Electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Prog. Polym. Sci. 77, 69–94 (2018)

    Article  CAS  Google Scholar 

  47. R.E. Kesting, Synthetic polymeric membranes. 1985

  48. S.P. Nunes, K.-V. Peinemann (2001) Membrane TechnologyWiley

  49. A. Bottino, G. Capannelli, A. Comite, F. Ferrari, R. Firpo, S. Venzano, Membrane technologies for water treatment and agroindustrial sectors. C. R. Chim. 12(8), 882–888 (2009)

    Article  CAS  Google Scholar 

  50. M. Aroon, A. Ismail, T. Matsuura, M. Montazer-Rahmati, Performance studies of mixed matrix membranes for gas separation: a review. Sep. Purif. Technol. 75(3), 229–242 (2010)

    Article  CAS  Google Scholar 

  51. de M.M. Oliveira, S. Forsberg, L. Selegård, D.J. Carastan, The influence of sonication processing conditions on electrical and mechanical properties of single and hybrid epoxy nanocomposites filled with carbon nanoparticles. Polymers. 13(23), 4128 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  52. P. Goh, A. Ismail, S. Sanip, B. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 81(3), 243–264 (2011)

    Article  CAS  Google Scholar 

  53. P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A: Appl. Sci. Manufac. 41(10), 1345–1367 (2010)

    Article  Google Scholar 

  54. M.N. Nejad, M. Asghari, M. Afsari, Investigation of carbon nanotubes in mixed matrix membranes for gas separation: a review. ChemBioEng Reviews. 3(6), 276–298 (2016)

    Article  Google Scholar 

  55. A. Kaboorani, B. Riedl, P. Blanchet, Ultrasonication technique: a method for dispersing nanoclay in wood adhesives. Journal of Nanomaterials, 2013. 2013: p. 1–9

  56. S. Park, N. Bernet, De La S. Roche, H. Hahn, Processing of iron oxide-epoxy vinyl ester nanocomposites. J. Compos. Mater. 37(5), 465–476 (2003)

    Article  CAS  Google Scholar 

  57. R.D. West, V.M. Malhotra, Rupture of nanoparticle agglomerates and formulation of Al2O3-epoxy nanocomposites using ultrasonic cavitation approach: effects on the structural and mechanical properties. Polym. Eng. Sci. 46(4), 426–430 (2006)

    Article  CAS  Google Scholar 

  58. H. Xia, Q. Wang, Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation. J. Appl. Polym. Sci. 87(11), 1811–1817 (2003)

    Article  CAS  Google Scholar 

  59. R. Rezaee, S. Nasseri, A.H. Mahvi, R. Nabizadeh, S.A. Mousavi, A. Rashidi, A. Jafari, S. Nazmara, Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water. J. Environ. Health Sci. Eng. 13(1), 1–11 (2015)

    Article  CAS  Google Scholar 

  60. S. Dutta, C.M. Hussain, Membranes with Functionalized Nanomaterials: Current and Emerging Research Trends in Membrane Technology. 2022

  61. A.C. Mumford, J.L. Barringer, W.M. Benzel, P.A. Reilly, L. Young, Microbial transformations of arsenic: mobilization from glauconitic sediments to water. Water Res. 46(9), 2859–2868 (2012)

    Article  CAS  PubMed  Google Scholar 

  62. G.R. Guillen, Y. Pan, M. Li, E.M. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50(7), 3798–3817 (2011)

    Article  CAS  Google Scholar 

  63. J.F. Kim, J.H. Kim, Y.M. Lee, E. Drioli, Thermally induced phase separation and electrospinning methods for emerging membrane applications: a review. AIChE J. 62(2), 461–490 (2016)

    Article  CAS  Google Scholar 

  64. N. Ismail, A. Venault, J.-P. Mikkola, D. Bouyer, E. Drioli, N.T.H. Kiadeh, Investigating the potential of membranes formed by the vapor induced phase separation process. J. Membr. Sci. 597, 117601 (2020)

    Article  CAS  Google Scholar 

  65. V. Khare, A. Greenberg, W. Krantz, Vapor-induced phase separation—effect of the humid air exposure step on membrane morphology: part I. insights from mathematical modeling. J. Membr. Sci. 258(1–2), 140–156 (2005)

    Article  CAS  Google Scholar 

  66. R. Pervin, P. Ghosh, M.G. Basavaraj, Tailoring pore distribution in polymer films via evaporation induced phase separation. RSC Adv. 9(27), 15593–15605 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. A.K. Hołda, I.F. Vankelecom, Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci., 2015. 132(27)

  68. P. Aerts, I. Genné, R. Leysen, P. Jacobs, I. Vankelecom, The role of the nature of the casting substrate on the properties of membranes prepared via immersion precipitation. J. Membr. Sci. 283(1–2), 320–327 (2006)

    Article  CAS  Google Scholar 

  69. B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: structure, properties and performance relationship. Desalination. 326, 77–95 (2013)

    Article  CAS  Google Scholar 

  70. Y.T. Chew, W.F. Yong, Recent advances of thin film nanocomposite membranes: effects of shape/structure of nanomaterials and interfacial polymerization methods. Chem. Eng. Res. Des. 172, 135–158 (2021)

    Article  CAS  Google Scholar 

  71. Z. Ng, W. Lau, T. Matsuura, A. Ismail, Thin film nanocomposite RO membranes: review on fabrication techniques and impacts of nanofiller characteristics on membrane properties. Chem. Eng. Res. Des. 165, 81–105 (2021)

    Article  CAS  Google Scholar 

  72. Y. Li, Y. Su, Y. Dong, X. Zhao, Z. Jiang, R. Zhang, J. Zhao, Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers. Desalination. 333(1), 59–65 (2014)

    Article  CAS  Google Scholar 

  73. Z. Yong, Y. Sanchuan, L. Meihong, G. Congjie, Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine-5-sulfonic acid. J. Membr. Sci. 270(1–2), 162–168 (2006)

    Article  CAS  Google Scholar 

  74. M. Adamczak, G. Kamińska, J. Bohdziewicz, Preparation of polymer membranes by in situ interfacial polymerization. International Journal of Polymer Science, 2019. 2019

  75. M. Safarpour, A. Khataee, V. Vatanpour, Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. J. Membr. Sci. 489, 43–54 (2015)

    Article  CAS  Google Scholar 

  76. R.T. Collins, J.J. Jones, M.T. Harris, O.A. Basaran, Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat. Phys. 4(2), 149–154 (2008)

    Article  CAS  Google Scholar 

  77. E. Zhmayev, D. Cho, Y.L. Joo, Nanofibers from gas-assisted polymer melt electrospinning. Polymer. 51(18), 4140–4144 (2010)

    Article  CAS  Google Scholar 

  78. D.H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer. 49(10), 2387–2425 (2008)

    Article  CAS  Google Scholar 

  79. S. Liu, K. White, D.H. Reneker, Controlled electrospinning to produce polymer nanofibers with specified diameters. in 2017 IEEE Industry Applications Society Annual Meeting. 2017. IEEE

  80. M.R. Snowdon, R.L. Liang, Electrospun Filtration Membranes for Environmental Remediation, in Nanomaterials for Air Remediation (Elsevier, 2020), pp. 309–341

  81. M. Mulder, Basic Principles of Membrane Technology (Springer science & business media, 1996)

  82. A. Eguizábal, M. Sgroi, D. Pullini, E. Ferain, M. Pina, Nanoporous PBI membranes by track etching for high temperature PEMs. J. Membr. Sci. 454, 243–252 (2014)

    Article  Google Scholar 

  83. M.R. Esfahani, S.A. Aktij, Z. Dabaghian, M.D. Firouzjaei, A. Rahimpour, J. Eke, I.C. Escobar, M. Abolhassani, L.F. Greenlee, A.R. Esfahani, Nanocomposite membranes for water separation and purification: fabrication, modification, and applications. Sep. Purif. Technol. 213, 465–499 (2019)

    Article  CAS  Google Scholar 

  84. J.M. Gohil, R.R. Choudhury, Introduction to Nanostructured and nano-enhanced Polymeric Membranes: Preparation, Function, and Application for Water Purification, in Nanoscale Materials in Water Purification (Elsevier, 2019), pp. 25–57

  85. S. Masoumi Khosroshahi, A. Miroliaei, Y. Jafarzadeh, Preparation and characterization of MWCNT-COOH/PVC ultrafiltration membranes to use in water treatment. Adv. Environ. Technol. 4(2), 95–105 (2018)

    Google Scholar 

  86. X. Guo, C. Li, S. Fan, Z. Gao, L. Tong, H. Gao, Q. Zhou, H. Shao, Y. Liao, Q. Li, Engineering polydopamine-glued sandwich-like nanocomposites with antifouling and antibacterial properties for the development of advanced mixed matrix membranes. Sep. Purif. Technol. 237, 116326 (2020)

    Article  CAS  Google Scholar 

  87. M.C. Nayak, A.M. Isloor, B. Lakshmi, H.M. Marwani, I. Khan, Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2 + from aqueous solutions. Arab. J. Chem. 13(3), 4661–4672 (2020)

    Article  Google Scholar 

  88. V. Vatanpour, A. Ghadimi, A. Karimi, A. Khataee, M.E. Yekavalangi, Antifouling polyvinylidene fluoride ultrafiltration membrane fabricated from embedding polypyrrole coated multiwalled carbon nanotubes. Mater. Sci. Engineering: C 89, 41–51 (2018)

    Article  CAS  Google Scholar 

  89. W. Wang, L. Zhu, B. Shan, C. Xie, C. Liu, F. Cui, G. Li, Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties. J. Membr. Sci. 548, 459–469 (2018)

    Article  CAS  Google Scholar 

  90. S. Zinadini, S. Rostami, V. Vatanpour, E. Jalilian, Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J. Membr. Sci. 529, 133–141 (2017)

    Article  CAS  Google Scholar 

  91. T. Jose, S.C. George, Induced hydrophilicity of the nanoclay on the pervaporation performance of cross-linked poly (vinyl alcohol) nanocomposite membranes. Polym.-Plast. Technol. Eng. 55(12), 1266–1281 (2016)

    Article  CAS  Google Scholar 

  92. P. Vandezande, Next-generation pervaporation membranes: Recent trends, challenges and perspectives. Pervaporation, Vapour Permeation and Membrane Distillation, 2015: p. 107–141

  93. P. Tewari, Nanocomposite Membrane Technology: Fundamentals and Applications (CRC, 2015)

  94. M. Fathizadeh, A. Aroujalian, A. Raisi, M. Fotouhi, Preparation and characterization of thin film nanocomposite membrane for pervaporative dehydration of aqueous alcohol solutions. Desalination. 314, 20–27 (2013)

    Article  CAS  Google Scholar 

  95. A. Bera, J.S. Trivedi, S.B. Kumar, A.K.S. Chandel, S. Haldar, S.K. Jewrajka, Anti-organic fouling and anti-biofouling poly (piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions. J. Hazard. Mater. 343, 86–97 (2018)

    Article  CAS  PubMed  Google Scholar 

  96. D.V. Bhalani, A.K.S. Chandel, J.S. Trivedi, S. Roy, S.K. Jewrajka, High molecular weight poly (vinyl pyrrolidone) induces hierarchical surface morphology in poly (vinylidene fluoride) membrane and facilitates separation of oil-water emulsions. J. Membr. Sci. 566, 415–427 (2018)

    Article  CAS  Google Scholar 

  97. H. Zarrabi, M.E. Yekavalangi, V. Vatanpour, A. Shockravi, M. Safarpour, Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube. Desalination. 394, 83–90 (2016)

    Article  CAS  Google Scholar 

  98. Y. Kim, E. Yang, H. Park, H. Choi, Anti-biofouling effect of a thin film nanocomposite membrane with a functionalized-carbon-nanotube-blended polymeric support for the pressure-retarded osmosis process. RSC Adv. 10(10), 5697–5703 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. D. Lawrence Arockiasamy, J. Alam, M. Alhoshan, Carbon nanotubes-blended poly (phenylene sulfone) membranes for ultrafiltration applications. Appl. Water Sci. 3, 93–103 (2013)

    Article  CAS  Google Scholar 

  100. J. Saadati, M. Pakizeh, Separation of oil/water emulsion using a new PSf/pebax/F-MWCNT nanocomposite membrane. J. Taiwan Inst. Chem. Eng. 71, 265–276 (2017)

    Article  CAS  Google Scholar 

  101. L. Powell, N. Hilal, C. Wright, Atomic force microscopy study of the biofouling and mechanical properties of virgin and industrially fouled reverse osmosis membranes. Desalination. 404, 313–321 (2017)

    Article  CAS  Google Scholar 

  102. J.-. Tian, Z.-. Chen, Y.-. Yang, H. Liang, J. Nan, G.-. Li, Consecutive chemical cleaning of fouled PVC membrane using NaOH and ethanol during ultrafiltration of river water. Water Res. 44(1), 59–68 (2010)

    Article  CAS  PubMed  Google Scholar 

  103. H. Ivnitsky, I. Katz, D. Minz, G. Volvovic, E. Shimoni, E. Kesselman, R. Semiat, C.G. Dosoretz, Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment. Water Res. 41(17), 3924–3935 (2007)

    Article  CAS  PubMed  Google Scholar 

  104. J.H. Kweon, J.H. Jung, S.R. Lee, H.W. Hur, Y. Shin, Y.H. Choi, Effects of consecutive chemical cleaning on membrane performance and surface properties of microfiltration. Desalination. 286, 324–331 (2012)

    Article  CAS  Google Scholar 

  105. J.H. Jhaveri, Z. Murthy, A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination. 379, 137–154 (2016)

    Article  CAS  Google Scholar 

  106. I.W. Azelee, P. Goh, W. Lau, A. Ismail, M. Rezaei-DashtArzhandi, K. Wong, M. Subramaniam, Enhanced desalination of polyamide thin film nanocomposite incorporated with acid treated multiwalled carbon nanotube-titania nanotube hybrid. Desalination. 409, 163–170 (2017)

    Article  Google Scholar 

  107. A.K. Shukla, J. Alam, M.A. Ansari, M. Alhoshan, M. Alam, A. Kaushik, Selective ion removal and antibacterial activity of silver-doped multi-walled carbon nanotube/polyphenylsulfone nanocomposite membranes. Mater. Chem. Phys. 233, 102–112 (2019)

    Article  CAS  Google Scholar 

  108. X.-T. Yuan, C.-X. Xu, H.-Z. Geng, Q. Ji, L. Wang, B. He, Y. Jiang, J. Kong, J. Li, Multifunctional PVDF/CNT/GO mixed matrix membranes for ultrafiltration and fouling detection. J. Hazard. Mater. 384, 120978 (2020)

    Article  CAS  PubMed  Google Scholar 

  109. A. Khalid, A.A. Al-Juhani, O.C. Al-Hamouz, T. Laoui, Z. Khan, M.A. Atieh, Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination. Desalination. 367, 134–144 (2015)

    Article  CAS  Google Scholar 

  110. V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J. Membr. Sci. 375(1–2), 284–294 (2011)

    Article  CAS  Google Scholar 

  111. A. Moslehyani, A. Ismail, M. Othman, T. Matsuura, Design and performance study of hybrid photocatalytic reactor-PVDF/MWCNT nanocomposite membrane system for treatment of petroleum refinery wastewater. Desalination. 363, 99–111 (2015)

    Article  CAS  Google Scholar 

  112. T.E. Thomas, A. Aani, S. Oatley-Radcliffe, D.L. Williams, P. M., and, N. Hilal, Laser doppler electrophoresis and electro-osmotic flow mapping: a novel methodology for the determination of membrane surface zeta potential. J. Membr. Sci. 523, 524–532 (2017)

    Article  CAS  Google Scholar 

  113. L.Y. Ng, H.S. Chua, C.Y. Ng, Incorporation of graphene oxide-based nanocomposite in the polymeric membrane for water and wastewater treatment: a review on recent development. J. Environ. Chem. Eng. 9(5), 105994 (2021)

    Article  CAS  Google Scholar 

  114. C. Zhao, B. Yang, J. Han, Y. Meng, L. Yu, D. Hou, J. Wang, Y. Zhao, Y. Zhai, S. Wang, Preparation of carboxylic multiwalled-carbon-nanotube–modified poly (m-phenylene isophthalamide) hollow fiber nanofiltration membranes with improved performance and application for dye removal. Appl. Surf. Sci. 453, 502–512 (2018)

    Article  CAS  Google Scholar 

  115. S. Al Aani, V. Gomez, C.J. Wright, N. Hilal, Fabrication of antibacterial mixed matrix nanocomposite membranes using hybrid nanostructure of silver coated multi-walled carbon nanotubes. Chem. Eng. J. 326, 721–736 (2017)

    Article  CAS  Google Scholar 

  116. V. Vatanpour, M. Esmaeili, M.H.D.A. Farahani, Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes. J. Membr. Sci. 466, 70–81 (2014)

    Article  CAS  Google Scholar 

  117. K.L. Tu, A.R. Chivas, L.D. Nghiem, Effects of membrane fouling and scaling on boron rejection by nanofiltration and reverse osmosis membranes. Desalination. 279(1–3), 269–277 (2011)

    Article  CAS  Google Scholar 

  118. A. Schäfer, A. Pihlajamäki, A.G. Fane, T. Waite, M. Nyström, Natural organic matter removal by nanofiltration: effects of solution chemistry on retention of low molar mass acids versus bulk organic matter. J. Membr. Sci. 242(1–2), 73–85 (2004)

    Article  Google Scholar 

  119. A.A. Alshahrani, I.H. Alsohaimi, S. Alshehri, A.R. Alawady, M. El-Aassar, L.D. Nghiem et al., Nanofiltration membranes prepared from pristine and functionalised multiwall carbon nanotubes/biopolymer composites for water treatment applications. J. Mater. Res. Technol. 9(4), 9080–9092 (2020)

    Article  CAS  Google Scholar 

  120. A. Franken, Prevention and Control of Membrane Fouling: Practical Implications and Examining Recent Innovations (Membraan Applicatie Centrum Twente bv, 2009)

  121. W. Gao, H. Liang, J. Ma, M. Han, Z.-. Chen, Z.-. Han, G. Li, -b., Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 2011. 272(1–3): p. 1–8

  122. X. Zhu, M. Elimelech, Colloidal fouling of reverse osmosis membranes: measurements and fouling mechanisms. Environ. Sci. Technol. 31(12), 3654–3662 (1997)

    Article  CAS  Google Scholar 

  123. E. Metcalf, M. Abu-Orf, G. Bowden, F.L. Burton, W. Pfrang, H.D. Stensel, G. Tchobanoglous, R. Tsuchihashi, and AECOM, Wastewater Engineering: Treatment and Resource Recovery (McGraw Hill Education, 2014)

  124. S. Boributh, A. Chanachai, R. Jiraratananon, Modification of PVDF membrane by chitosan solution for reducing protein fouling. J. Membr. Sci. 342(1–2), 97–104 (2009)

    Article  CAS  Google Scholar 

  125. N. Haghighat, V. Vatanpour, Fouling decline and retention increase of polyvinyl chloride nanofiltration membranes blended by polypyrrole functionalized multiwalled carbon nanotubes. Mater. Today Commun. 23, 100851 (2020)

    Article  CAS  Google Scholar 

  126. M. Samari, S. Zinadini, A.A. Zinatizadeh, M. Jafarzadeh, F. Gholami, Performance evaluation of amino-functionalized mesoporous/PES nanofiltration membrane in anionic dye removal from aqueous solutions. Appl. Water Sci. 12(12), 263 (2022)

    Article  CAS  Google Scholar 

  127. W. Guo, H.-H. Ngo, J. Li, A mini-review on membrane fouling. Bioresour. Technol. 122, 27–34 (2012)

    Article  CAS  PubMed  Google Scholar 

  128. D. Saeki, H. Karkhanechi, H. Matsuura, H. Matsuyama, Effect of operating conditions on biofouling in reverse osmosis membrane processes: bacterial adhesion, biofilm formation, and permeate flux decrease. Desalination. 378, 74–79 (2016)

    Article  CAS  Google Scholar 

  129. D. Ferrando, C. Ziemba, M. Herzberg, Revisiting interrelated effects of extracellular polysaccharides during biofouling of reverse osmosis membranes: viscoelastic properties and biofilm enhanced osmotic pressure. J. Membr. Sci. 523, 394–401 (2017)

    Article  CAS  Google Scholar 

  130. X. Zhang, L. Wang, E. Levänen, Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 3(30), 12003–12020 (2013)

    Article  CAS  Google Scholar 

  131. M.-. Wang, T. Wang, K. Yuan, J. Du, Preparation of water dispersible poly (methyl methacrylate)-based vesicles for facile persistent antibacterial applications. Chin. J. Polym. Sci. 34, 44–51 (2016)

    Article  Google Scholar 

  132. Y. Xue, H. Xiao, Y. Zhang, Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci. 16(2), 3626–3655 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. N. Ahmad, A. Samavati, N.A.H.M. Nordin, J. Jaafar, A.F. Ismail, N.A. Malek, N. N., enhanced performance and antibacterial properties of amine-functionalized ZIF-8-decorated GO for ultrafiltration membrane. Sep. Purif. Technol. 239, 116554 (2020)

    Article  CAS  Google Scholar 

  134. S. Kang, M. Herzberg, D.F. Rodrigues, M. Elimelech, Antibacterial effects of carbon nanotubes: size does matter! Langmuir. 24(13), 6409–6413 (2008)

    Article  CAS  PubMed  Google Scholar 

  135. A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel. Science. 311(5761), 622–627 (2006)

    Article  CAS  PubMed  Google Scholar 

  136. S.K. Manna, S. Sarkar, J. Barr, K. Wise, E.V. Barrera, O. Jejelowo, A.C. Rice-Ficht, G.T. Ramesh, Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Lett. 5(9), 1676–1684 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. V. Sambhy, M.M. MacBride, B.R. Peterson, A. Sen, Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J. Am. Chem. Soc. 128(30), 9798–9808 (2006)

    Article  CAS  PubMed  Google Scholar 

  138. X. Huang, Y. Chen, X. Feng, X. Hu, Y. Zhang, L. Liu, Incorporation of oleic acid-modified Ag@ ZnO core-shell nanoparticles into thin film composite membranes for enhanced antifouling and antibacterial properties. J. Membr. Sci. 602, 117956 (2020)

    Article  CAS  Google Scholar 

  139. M. Madigan, J. Martinko, Brock Biology of Microorganisms. 11th EditionPrentice Hall. 2005, USA

  140. H. Yun, J.D. Kim, H.C. Choi, C.W. Lee, Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against gram-negative and gram-positive bacteria. Bull. Korean Chem. Soc. 34(11), 3261–3264 (2013)

    Article  CAS  Google Scholar 

  141. J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3(1), 95–101 (2007)

    Article  CAS  Google Scholar 

  142. Z.H. Li, S.J. You, X.B. Gong, X.Y. Wan, N.Q. Ren, Effective electrochemical sterilization based on electrocatalysis of oxygen reduction by multiwalled carbon nanotubes. ChemElectroChem. 3(10), 1678–1685 (2016)

    Article  CAS  Google Scholar 

  143. F. Zhao, F. Qiu, X. Zhang, S. Yu, H.-S. Kim, H.-D. Park, S. Takizawa, P. Wang, Preparation of single-walled carbon nanotubes/polyvinylchloride membrane and its antibacterial property. Water Sci. Technol. 66(11), 2275–2283 (2012)

    Article  CAS  PubMed  Google Scholar 

  144. J. Lee, W. Song, S.S. Jang, J.D. Fortner, P.J. Alvarez, W.J. Cooper, J.-H. Kim, Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction. Environ. Sci. Technol. 44(10), 3786–3792 (2010)

    Article  CAS  PubMed  Google Scholar 

  145. W. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J.P. Chen, A. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res. 80, 306–324 (2015)

    Article  CAS  PubMed  Google Scholar 

  146. S. Kar, R. Bindal, P. Tewari, Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today. 7(5), 385–389 (2012)

    Article  CAS  Google Scholar 

  147. C. Kingston, R. Zepp, A. Andrady, D. Boverhof, R. Fehir, D. Hawkins, J. Roberts, P. Sayre, B. Shelton, Y. Sultan, Release characteristics of selected carbon nanotube polymer composites. Carbon. 68, 33–57 (2014)

    Article  CAS  Google Scholar 

  148. H. Luan, B. Teychene, H. Huang, Efficient removal of as (III) by Cu nanoparticles intercalated in carbon nanotube membranes for drinking water treatment. Chem. Eng. J. 355, 341–350 (2019)

    Article  CAS  Google Scholar 

  149. P. Daraei, S.S. Madaeni, N. Ghaemi, H.A. Monfared, M.A. Khadivi, Fabrication of PES nanofiltration membrane by simultaneous use of multi-walled carbon nanotube and surface graft polymerization method: comparison of MWCNT and PAA modified MWCNT. Sep. Purif. Technol. 104, 32–44 (2013)

    Article  CAS  Google Scholar 

  150. X. Zhao, J. Ma, Z. Wang, G. Wen, J. Jiang, F. Shi, L. Sheng, Hyperbranched-polymer functionalized multi-walled carbon nanotubes for poly (vinylidene fluoride) membranes: from dispersion to blended fouling-control membrane. Desalination. 303, 29–38 (2012)

    Article  CAS  Google Scholar 

  151. V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep. Purif. Technol. 90, 69–82 (2012)

    Article  CAS  Google Scholar 

  152. H. Wu, B. Tang, P. Wu, Optimization, characterization and nanofiltration properties test of MWNTs/polyester thin film nanocomposite membrane. J. Membr. Sci. 428, 425–433 (2013)

    Article  CAS  Google Scholar 

  153. W. Yang, H. Xu, W. Chen, Z. Shen, M. Ding, T. Lin, H. Tao, Q. Kong, G. Yang, Z. Xie, A polyamide membrane with tubular crumples incorporating carboxylated single-walled carbon nanotubes for high water flux. Desalination. 479, 114330 (2020)

    Article  CAS  Google Scholar 

  154. H. Wu, H. Sun, W. Hong, L. Mao, Y. Liu, Improvement of polyamide thin film nanocomposite membrane assisted by tannic acid–FeIII functionalized multiwall carbon nanotubes. ACS Appl. Mater. Interfaces. 9(37), 32255–32263 (2017)

    Article  CAS  PubMed  Google Scholar 

  155. F.-Y. Zhao, Y.-L. Ji, X.-D. Weng, Y.-F. Mi, C.-C. Ye, Q.-F. An, C.-J. Gao, High-flux positively charged nanocomposite nanofiltration membranes filled with poly (dopamine) modified multiwall carbon nanotubes. ACS Appl. Mater. Interfaces. 8(10), 6693–6700 (2016)

    Article  CAS  PubMed  Google Scholar 

  156. V. Vatanpour, N. Haghighat, Improvement of polyvinyl chloride nanofiltration membranes by incorporation of multiwalled carbon nanotubes modified with triethylenetetramine to use in treatment of dye wastewater. J. Environ. Manage. 242, 90–97 (2019)

    Article  CAS  PubMed  Google Scholar 

  157. I.W. Azelee, P. Goh, W. Lau, A. Ismail, Facile acid treatment of multiwalled carbon nanotube-titania nanotube thin film nanocomposite membrane for reverse osmosis desalination. J. Clean. Prod. 181, 517–526 (2018)

    Article  Google Scholar 

  158. J. Farahbakhsh, M. Delnavaz, V. Vatanpour, Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties. Desalination. 410, 1–9 (2017)

    Article  Google Scholar 

  159. H.Y. Phin, J.C. Sin, S.H. Tan, T.L. Chew, Y.T. Ong, Fabrication of asymmetric zinc oxide/carbon nanotubes coated polysulfone photocatalytic nanocomposite membrane for fouling mitigation. J. Appl. Polym. Sci. 138(40), 51194 (2021)

    Article  CAS  Google Scholar 

  160. X. Song, S. Li, W. Zhang, H. Liu, J. Jiang, C. Zhang, Constructing semi-oriented single-walled carbon nanotubes artificial water channels for realized efficient desalination of nanocomposite RO membranes. J. Membr. Sci. 663, 121029 (2022)

    Article  CAS  Google Scholar 

  161. S. Arefi-Oskoui, A. Khataee, S.J. Behrouz, V. Vatanpour, S.H. Gharamaleki, Y. Orooji, M. Safarpour, Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein. Sep. Purif. Technol. 280, 119822 (2022)

    Article  CAS  Google Scholar 

  162. A. Zhao, N. Zhang, Q. Li, L. Zhou, H. Deng, Z. Li, Y. Wang, E. Lv, Z. Li, M. Qiao, Incorporation of silver-embedded carbon nanotubes coated with tannic acid into polyamide reverse osmosis membranes toward high permeability, antifouling, and antibacterial properties. ACS Sustain. Chem. Eng. 9(34), 11388–11402 (2021)

    Article  CAS  Google Scholar 

  163. D. Ma, X. Zou, Z. Zhao, J. Zhou, S. Li, H. Yin, J. Wang, Hydrophilic PAA-g-MWCNT/TiO2@ PES nano-matrix composite membranes: anti-fouling, antibacterial and photocatalytic. Eur. Polymer J. 168, 111006 (2022)

    Article  CAS  Google Scholar 

  164. R. Zhou, D. Rana, T. Matsuura, C.Q. Lan, Effects of multi-walled carbon nanotubes (MWCNTs) and integrated MWCNTs/SiO2 nano-additives on PVDF polymeric membranes for vacuum membrane distillation. Sep. Purif. Technol. 217, 154–163 (2019)

    Article  CAS  Google Scholar 

  165. S. Dube, R. Moutloali, S. Malinga, Hyperbranched polyethyleneimine/multi-walled carbon nanotubes polyethersulfone membrane incorporated with Fe-Cu bimetallic nanoparticles for water treatment. J. Environ. Chem. Eng. 8(4), 103962 (2020)

    Article  CAS  Google Scholar 

  166. M.L. Masheane, L.N. Nthunya, S.P. Malinga, E.N. Nxumalo, B.B. Mamba, S.D. Mhlanga, Synthesis of Fe-Ag/f-MWCNT/PES nanostructured-hybrid membranes for removal of cr (VI) from water. Sep. Purif. Technol. 184, 79–87 (2017)

    Article  CAS  Google Scholar 

  167. J. Ahmad, M.-B. Hägg, Preparation and characterization of polyvinyl acetate/zeolite 4A mixed matrix membrane for gas separation. J. Membr. Sci. 427, 73–84 (2013)

    Article  CAS  Google Scholar 

  168. A. Ismail, T. Kusworo, A. Mustafa, Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent. J. Membr. Sci. 319(1–2), 306–312 (2008)

    Article  CAS  Google Scholar 

  169. D.D. Perrin, W.L. Armarego, D.R. Perrin, Purification of laboratory chemicals. 1966

  170. R. Nasir, H. Mukhtar, Z. Man, D.F. Mohshim, Material advancements in fabrication of mixed-matrix membranes. Chem. Eng. Technol. 36(5), 717–727 (2013)

    Article  CAS  Google Scholar 

  171. J.M. Arsuaga, A. Sotto, del G. Rosario, A. Martínez, S. Molina, S.B. Teli, de J. Abajo, Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J. Membr. Sci. 428, 131–141 (2013)

    Article  Google Scholar 

  172. A. Sotto, A. Boromand, R. Zhang, P. Luis, J.M. Arsuaga, J. Kim, Van der B. Bruggen, Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES–TiO2 membranes. J. Colloid Interface Sci. 363(2), 540–550 (2011)

    Article  CAS  PubMed  Google Scholar 

  173. I. Soroko, A. Livingston, Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. J. Membr. Sci. 343(1–2), 189–198 (2009)

    Article  CAS  Google Scholar 

  174. S. Arefi-Oskoui, A. Khataee, V. Vatanpour, Effect of solvent type on the physicochemical properties and performance of NLDH/PVDF nanocomposite ultrafiltration membranes. Sep. Purif. Technol. 184, 97–118 (2017)

    Article  CAS  Google Scholar 

  175. G. Arthanareeswaran, V.M. Starov, Effect of solvents on performance of polyethersulfone ultrafiltration membranes: investigation of metal ion separations. Desalination. 267(1), 57–63 (2011)

    Article  CAS  Google Scholar 

  176. M. Ahmad, D. Mohshim, R. Nasir, H. Mannan, H. Mukhtar, Effect of solvents on the morphology and performance of Polyethersulfone (PES) polymeric membranes material for CO2/CH4 separation. in IOP Conference Series: Materials Science and Engineering. 2018. IOP Publishing

  177. A. Alpatova, M. Meshref, K.N. McPhedran, M.G. El-Din, Composite polyvinylidene fluoride (PVDF) membrane impregnated with Fe2O3 nanoparticles and multiwalled carbon nanotubes for catalytic degradation of organic contaminants. J. Membr. Sci. 490, 227–235 (2015)

    Article  CAS  Google Scholar 

  178. M.N.Z. Abidin, P.S. Goh, A.F. Ismail, M.H.D. Othman, H. Hasbullah, N. Said, S.H.S.A. Kadir, F. Kamal, M.S. Abdullah, B.C. Ng, Development of biocompatible and safe polyethersulfone hemodialysis membrane incorporated with functionalized multi-walled carbon nanotubes. Mater. Sci. Engineering: C 77, 572–582 (2017)

    Article  CAS  Google Scholar 

  179. de C.-F. Lannoy, E. Soyer, M.R. Wiesner, Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J. Membr. Sci. 447, 395–402 (2013)

    Article  Google Scholar 

  180. L.E. Macevele, K.L. Moganedi, T. Magadzu, Investigation of antibacterial and fouling resistance of silver and multi-walled carbon nanotubes doped poly (vinylidene fluoride-co-hexafluoropropylene) composite membrane. Membranes. 7(3), 35 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  181. Q. Yang, X. Li, L. Zhang, G. Wang, G. Chen, D. Lin, B. Xing, Dispersion and stability of multi-walled carbon nanotubes in water as affected by humic acids. J. Mol. Liq. 279, 361–369 (2019)

    Article  CAS  Google Scholar 

  182. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors hereby express their gratitude to the Student Research Committee of Kermanshah University of Medical Sciences for financial support (Grant No: 4020790,  Ethical Code: IR.KUMS.REC.1402.346).

Funding

The work was supported by Kermanshah University of Medical Sciences (Grant No: 4020790, Ethical Code: IR.KUMS.REC.1402.346).

Author information

Authors and Affiliations

Authors

Contributions

AJ: Supervision, original idea, reviewing-editing manuscript and improving overall manuscript quality, review and editing tables. DN: writing—first draft, review and editing tables. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ali Jafari.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Ethically approved.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayeri, D., Jafari, A. A Review on the Recent Development of Carbon Nanotubes (CNTs) Application for Polymeric Mixed-Matrix Membranes: Synthesis, Performance, and Future Challenges. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03036-0

Keywords

Navigation