Skip to main content
Log in

Design of an Efficient Supercapacitor Binder-Free Electrode Using a Two-Step In-Situ Hydrothermal Synthesis of Hierarchical Ni–Co LDH/Ni2SnO4 Nanosheets Stacks on Ni Foam

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Improving the electrochemical performance of electrode materials via structural design is critical in developing energy storage technologies. In this investigation, a nanoarray electrode composed of Co–Ni layered double hydroxide (Ni–Co LDH) nanosheets and Ni2SnO4 nanosheets (Ni2SnO4 NSs) stabilized on Ni foam (NF) is developed utilizing an in-situ growth method to its electrochemical properties in supercapacitors can be evaluated. The Ni2SnO4 was created in the first stage using a light hydrothermal reaction as the core. The Ni–Co LDH was then hydrothermally immobilized using the electrode, which had been made as a skeleton. The structural and textural study of the material was described using energy dispersive X-ray analysis (XRD), Fourier transforms infrared (FT–IR), field-emission scanning electron microscopy, and transmission electron microscopy. When the developed Ni–Co LDH/Ni2SnO4/NF electrode is compared to the Ni2SnO4/NF electrode, the electrochemical result shows a specific capacitance of up to 3,924 F g−1 at 1 A g−1 in a 2 mol L−1 KOH electrolyte, as well as a capacitance retention of 95% after 3000 cycles. Unsymmetrical supercapacitors made of Ni–Co LDH/Ni2SnO4/NF and activated carbon demonstrated exceptional electrochemical properties, including high rate capability, high energy, and power density (91.03 Wh kg−1 and 9.0 kW kg−1, respectively), and long cycle life. Due to its unique core/shell structural system, which facilitates ion diffusion and offers a fast electron transport kinetic model and good strain lodging, the rising pseudocapacitive behaviors render it an intriguing candidate for electrochemical energy storage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Li, Z. Zha, B. L, T. Wei, H. Jiang, Z. Yan, Int. J. Hydrog Energy. 47, 10689–10700 (2022)

    Article  CAS  Google Scholar 

  2. P. Lamba, P. Singh, P. Singh, P. Singh, A. Kumar, M. Gupt, Y. Kumar, J. Energy Storage. 48, 103871 (2022)

    Article  Google Scholar 

  3. I. Hussain, C. Lamiel, M. Ahmad, Y. Chen, S. Shuang, M.S. Javed, Y. Yang, K. Zhang, J. Energy Storage. 44, 103405 (2021)

    Article  Google Scholar 

  4. M.A. Basit, S. Dilshad, R. Badar, S.M. Sami Ur Rehman, Int. J. Energy Res. 6, 4132–4162 (2020)

    Article  Google Scholar 

  5. W. Wei, Z. Chen, Y. Zhang, J. Chen, L. Wan, C. Du, M. Xie, X. Guo, J. Energy Chem. 48, 277–2842 (2020)

    Article  Google Scholar 

  6. H.A. Ghaly, A.G. El-Deen, E.R. Souaya, N.K. Allam, Electrochim. Acta. 310, 58–69 (2019)

    Article  CAS  Google Scholar 

  7. M. Xie, H. Meng, J. Chen, Y. Zhang, C. Du, L. Wan, Y. Chen, ACS Appl. Energy Mater. 4, 1840–1850 (2021)

    Article  CAS  Google Scholar 

  8. J. Cho, T.Y. Yun, H.Y. Noh, S.H. Baek, M. Nam, B. Kim, H.C. Moon, D.H. Ko, Adv. Funct. Mater. 12, 1909601 (2020)

    Article  Google Scholar 

  9. X. Wang, H. Song, S. Ma, M. Li, G. He, M. Xie, X. Guo, J. Chem. Eng. 432, 134319 (2022)

    Article  CAS  Google Scholar 

  10. S.A. Darsara, M. Seifi, M.B. Askari, M. Osquian, Ceram. Int. 15, 20992–20998 (2021)

    Article  Google Scholar 

  11. Y. Yao, Y. Yu, L. Wan, C. Du, Y. Zhang, J. Chen, M. Xie, J. Colloid Interface Sci. 649, 519–527 (2023)

    Article  CAS  PubMed  Google Scholar 

  12. M. Xie, S. Duan, Y. Shen, K. Fang, Y. Wang, M. Lin, X. Guo, ACS Energy Lett. 1, 814–819 (2016)

    Article  CAS  Google Scholar 

  13. C. Wang, F. Liu, J. Chen, Z. Yuan, C. Liu, X. Zhang, M. Xu, L. Wei, Y. Chen, Energy Storage Mater. 32, 448–457 (2020)

    Article  Google Scholar 

  14. Y. Yao, H. Li, Y. Yu, C. Du, L. Wan, H. Ye, J. Chen, Y. Zhang, M. Xie, J. Energy Storage. 59, 106422 (2023)

    Article  Google Scholar 

  15. H. Peçenek, F.K. Dokan, M.S. Onses, E. Yılmaz, E. Sahmetlioglu, Mater. Res. Bull. 149, 111745 (2022)

    Article  Google Scholar 

  16. N.N. Loganathan, V. Perumal, B.R. Pandian, R. Atchudan, T.N. Edison, M. Ovinis, J. Energy Storage. 49, 104149 (2022)

    Article  Google Scholar 

  17. S. Bashir, K. Hasan, M. Hina, R.A. Soomro, M.A. Mujtaba, S. Ramesh, K. Ramesh, N. Duraisamy, R. Manikam, J. Electroanal. Chem. 898, 115626 (2021)

    Article  CAS  Google Scholar 

  18. M. Xie, Z. Xu, S. Duan, Z. Tian, Y. Zhang, K. Xiang, M. Lin, X. Guo, W. Ding, Nano Res. 11, 216–224 (2018)

    Article  CAS  Google Scholar 

  19. S. Korkmaz, I.A. Kariper, O. Karaman, C. Karaman, Ceram. Int. 47, 34514–34520 (2021)

    Article  CAS  Google Scholar 

  20. R.B. Ambade, H. Lee, K.H. Lee, H. Lee, G.K. Veerasubramani, Y.B. Kim, T.H. Han, Chem. Eng. J. 436, 135041 (2022)

    Article  CAS  Google Scholar 

  21. T. Yue, B. Shen, P. Ga, Renew. Sust Energ. Rev. 158, 112131 (2022)

    Article  CAS  Google Scholar 

  22. M. Guo, J. Sun, Y. Liu, C. Huangfu, R. Wang, C. Han, Z. Qu, N. Wang, L. Zhao, Q. Zheng, J. Electroanal. Chem. 901, 115785 (2021)

    Article  CAS  Google Scholar 

  23. J.A. Rajesh, J.Y. Park, S.H. Kang, K.S. Ahn, Electrochim. Acta. 414, 140203 (2022)

    Article  CAS  Google Scholar 

  24. T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Energy Storage Mater. 16, 545–573 (2019)

    Article  Google Scholar 

  25. M.U. Rani, V. Naresh, D. Damodar, S. Muduli, S.K. Martha, A.S. Deshpande, Electrochim. Acta. 365, 137284 (2021)

    Article  CAS  Google Scholar 

  26. S. Azizi, M. Seifi, M.B. Askari, Phys. B: Condens. Matter. 600, 412606 (2021)

    Article  CAS  Google Scholar 

  27. Y. Zhao, X. He, R. Chen, Q. Liu, J. Liu, J. Yu, J. Li, H. Zhang, H. Dong, M. Zhang, J. Wang, Chem. Eng. J. 352, 29–38 (2018)

    Article  CAS  Google Scholar 

  28. D. Chu, F. Li, X. Song, H. Ma, L. Tan, H. Pang, X. Wang, D. Guo, B. Xiao, J. Colloid Interface Sci. 568, 130–138 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. C. Hu, J. Gong, J. Wang, T. Zhou, M. Xie, S. Wang, Y. Dai, J. Alloys Compd. 902, 163749 (2022)

    Article  CAS  Google Scholar 

  30. M. Fei, R. Zhang, L. Li, J. Li, Z. Ma, K. Zhang, Z. Li, Z. Yu, Q. Xiao, D. Yan, Electrochim. Acta. 368, 137586 (2021)

    Article  CAS  Google Scholar 

  31. M. Farahpour, M. Arvand, J. Energy Storage. 40, 102742 (2021)

    Article  Google Scholar 

  32. G. Cheng, Y. Yan, R. Chen, New. J. Chem. 39, 676–682 (2015)

    Article  CAS  Google Scholar 

  33. N. Mohri, B. Oschmann, N. Laszczynski, F. Mueller, J. von Zamory, M.N. Tahir, S. Passerini, R. Zentel, J. Mater. Chem. A 4, 612–619 (2016)

    Article  CAS  Google Scholar 

  34. S. Daneshvar, M. Arvand, J. Alloys Compd. 815, 152421 (2020)

    Article  CAS  Google Scholar 

  35. C. Chen, D. Yan, X. Luo, W. Gao, G. Huang, Z. Han, Y. Zeng, Z. Zhu, ACS Appl. Mater. Interfaces. 10, 4662–4671 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. Z. Liu, C. Pan, W. Li, S. Wei, M. Zhang, S. Chen, Electrochim. Acta. 338, 135897 (2020)

    Article  CAS  Google Scholar 

  37. X. Wang, A. Sumboja, M. Lin, J. Yan, P.S. Lee, Nanoscale. 4, 7266–7272 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. J. Xu, S. Gai, F. He, N. Niu, P. Gao, Y. Chen, P. Yang, Dalton Trans. 43, 11667–11675 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Y.Y. Liang, S.J. Bao, H.L. Li, J. Solid State Electrochem. 11, 571–576 (2007)

    Article  CAS  Google Scholar 

  40. V. Gupta, S. Gupta, N. Miura, J. Power Sources. 175, 680–685 (2008)

    Article  CAS  Google Scholar 

  41. K. Liang, T.-Y. Cheang, T. Wen, X. Xie, X. Zhou, Z.-W. Zhao, C.-C. Shen, N. Jiang, A.-W. Xu, J. Phys. Chem. C 120, 3669–3676 (2016)

    Article  CAS  Google Scholar 

  42. C. Zhang, C.Z. Jin, G.X. Teng, Y.N. Gu, W.G. Ma, Chem. Eng. Sci. 365, 121–131 (2019)

    Article  CAS  Google Scholar 

  43. H. Jiang, T. Zhao, C. Li, J. Ma, J. Mater. Chem. 21, 3818–3823 (2011)

    Article  CAS  Google Scholar 

  44. P.S. Kumar, P. Prakash, A. Srinivasan, C. Karuppiah, J. Power Sources. 482, 228892 (2021)

    Article  Google Scholar 

  45. J. Balamurugan, C. Li, S.G. Peer, N.H. Kim, J.H. Lee, Nanoscale. 9, 13747–13759 (2017)

    Article  CAS  PubMed  Google Scholar 

  46. J. Du, Q. Yan, Y. Li, K. Cheng, K. Ye, K. Zhu, J. Yan, D. Cao, X. Zhang, G. Wang, Appl. Surf. Sci. 487, 198–205 (2019)

    Article  CAS  Google Scholar 

  47. X. Bai, Q. Liu, H. Zhang, J. Liu, Z. Li, X. Jing, Y. Yuan, L. Liu, J. Wang, Electrochim. Acta. 215, 492–499 (2016)

    Article  CAS  Google Scholar 

  48. R. Li, S. Wang, Z. Huang, F. Lu, T. He, J. Power Sources. 312, 156–164 (2016)

    Article  CAS  Google Scholar 

  49. H. Liang, J. Lin, H. Jia, S. Chen, J. Qi, J. Cao, T. Lin, W. Fei, J. Feng, J. Power Sources. 378, 248–254 (2018)

    Article  CAS  Google Scholar 

  50. S. Kandula, K.R. Shrestha, G. Rajeshkhanna, N.H. Kim, J.H. Lee, ACS Appl. Mater. Interfaces. 11, 11555–11567 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the post-graduate office of Technical and Vocational University for the support of this work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

IMM: Methodology, Investigation, Writing—original draft. RS: Conceptualization, Visualization, Supervision, Writing—review and editing.

Corresponding author

Correspondence to Issa Mousazadeh Moghaddampour.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousazadeh Moghaddampour, I., Shemshadi, R. Design of an Efficient Supercapacitor Binder-Free Electrode Using a Two-Step In-Situ Hydrothermal Synthesis of Hierarchical Ni–Co LDH/Ni2SnO4 Nanosheets Stacks on Ni Foam. J Inorg Organomet Polym 34, 1876–1886 (2024). https://doi.org/10.1007/s10904-023-02929-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02929-w

Keywords

Navigation