Skip to main content
Log in

Studies on Structural and Dielectric Relaxation of Disordered Barium Titanate due to La3+ Doping

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Ba0.97La0.02TiO3 (BLT) ceramic has been prepared by the predictable Molten-Salt process. The structural analyses of the BLT powders were done at room temperature by X-ray powder diffraction. The compound crystallizes with tetragonal symmetry. The dependence of the dielectric constant on temperature for various frequencies (1 kHz–1 MHz) has been determined. The diffuse transition is observed in the variation of the dielectric constant, and it provides evidence for three relaxor characteristics. Three relaxor parts are represented, such as [350 < T < 450; defines relaxor (1), 450 < T < 550; labels relaxor (2), 550 < T < 700; identifies relaxor (3)]. To comprehend the relaxation behavior of the prepared ceramic, three distinct techniques, specifically Debye, Vogel–Fulcher (V–F), and Power low, were utilized. Using the Debye, V–F, and Power law models, the activation energy, Debye frequency, and freezing temperature were derived from the experimental data. The available values are within an acceptable range and provide a clear explanation for the prepared sample's strong relaxation characteristics. The V–F model is found to be more suitable to explain the relaxation process of the prepared ceramic based on the goodness of fit parameter. Characteristically, this study highlights the relaxation process in the lead-free BLT system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Derived data supporting the findings of this study are available from the corresponding author upon request.

References

  1. B. Farhadi et al., J. Power. Sources 422, 196–207 (2019)

    Article  CAS  Google Scholar 

  2. M.B. Henda et al., Eng. Anal. Bound. Elem. 148, 15–21 (2023)

    Article  Google Scholar 

  3. Lupi, Eduardo, et al. "Engineering Relaxor Behavior in (BaTiO3) n/(SrTiO3) n Superlattices." Advanced Materials (2023): 2302012.

  4. M.K. Rout, S. Keshri, Crossover to the negative dielectric constant in La3+ and Dy3+ doped Co-Zn spinel nanoferrites. J. Alloys Compd. 965, 171425 (2023)

    Article  CAS  Google Scholar 

  5. A. Safari, E.K. Akdoğan, J.D. Leber, Ferroelectric ceramics and composites for piezoelectric transducer applications. Jpn. J. Appl. Phys.. J. Appl. Phys. 61(SN), SN0801 (2022)

    Article  CAS  Google Scholar 

  6. I.A. Parinov, A.V. Cherpakov, Overview: state-of-the-art in the energy harvesting based on piezoelectric devices for last decade. Symmetry 14(4), 765 (2022)

    Article  CAS  Google Scholar 

  7. K.M. Batoo et al., Improved room temperature dielectric properties of Gd3+ and Nb5+ co-doped Barium Titanate ceramics. J. Alloys Compd. 883, 160836 (2021)

    Article  CAS  Google Scholar 

  8. M. Humayun et al., Perovskite-type lanthanum ferrite based photocatalysts: preparation, properties, and applications. J. Energy Chem. 66, 314–338 (2022)

    Article  CAS  Google Scholar 

  9. M. Jebli et al., J. Mater. Sci. 31(24), 22323–22339 (2020)

    CAS  Google Scholar 

  10. U. Younas et al., Fabrication of La 3+ doped Ba 1–x La x TiO 3 ceramics with improved dielectric and ferroelectric properties using a composite-hydroxide-mediated method. RSC Adv. 13(8), 5293–5306 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Wang et al., J. Eur. Ceram. Soc. 37, 2385–2390 (2017)

    Article  Google Scholar 

  12. A. Ianculescu et al., J. Alloys Compd. 509, 10040–10049 (2011)

    Article  CAS  Google Scholar 

  13. A.C. Ianculescu et al., Formation mechanism and characteristics of lanthanum-doped BaTiO3 powders and ceramics prepared by the sol–gel process. Mater CharactCharact. 106, 195–207 (2015)

    Article  CAS  Google Scholar 

  14. Ch. Rayssi et al., J. Mol. Struct. 1249, 131539 (2022)

    Article  CAS  Google Scholar 

  15. M. Jebli et al., J. Mol. Struct. 1260, 132788 (2022)

    Article  CAS  Google Scholar 

  16. M Jebli, et al., J. Inorg. Organometal. Polym. Mater. 1–17 (2022)

  17. D.D. Andhare et al., Rietveld refined structural, morphological, Raman and magnetic investigations of superparamagnetic Zn–Co nanospinel ferrites prepared by cost-effective co-precipitation route. Appl. Phys. A 127, 1–13 (2021)

    Article  Google Scholar 

  18. M. Jebli et al., RSC Adv. 11, 23664–23678 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Jebli et al., Appl. Phys. A 126, 1–16 (2020)

    Article  Google Scholar 

  20. M. Jebli et al., J. Mater. Sci. 33, 18544–18555 (2022)

    CAS  Google Scholar 

  21. C. Rayssi et al., Appl. Phys. A 128(5), 1–10 (2022)

    Article  Google Scholar 

  22. M. Jebli et al., J. Alloys Compd. 784, 204–212 (2019)

    Article  CAS  Google Scholar 

  23. M. Jebli et al., J. Inorg. Organomet. Polym. Mater. 32, 1334–1353 (2022)

    Article  CAS  Google Scholar 

  24. M. Jebli, et al., J. Inorg. Organometal. Polym. Mater. 1–10 (2023)

  25. Z. Li et al., Direct current (dc) bias effect on the dielectric constant of Dy and Ho-doped BaTiO3-based ceramic and MLCCs. Ceram. Int. 48(19), 27439–27447 (2022)

    Article  CAS  Google Scholar 

  26. L. Lemos da Silva et al., Uncovering the symmetry of the induced ferroelectric phase transformation in polycrystalline barium titanate. J. Appl. Phys. (2021). https://doi.org/10.1063/5.0068703

    Article  Google Scholar 

  27. J. Wang et al., The mechanism for the enhanced mechanical and piezoelectricity properties of La2O3 doped BaTiO3 ceramic coatings prepared by plasma spray. J. Alloys Compd. 897, 162944 (2022)

    Article  CAS  Google Scholar 

  28. Z. Lv, J. Wei, T. Yang, Z. Sun, Z. Xu, Manipulation of Curie temperature and ferroelectric polarization for large electrocaloric strength in BaTiO3-based ceramics. Ceram. Int. 46, 14978–14984 (2020)

    Article  CAS  Google Scholar 

  29. Y. Wang, K. Miao, W. Wang, Y. Qin, Fabrication of lanthanum doped BaTiO3 fine-grained ceramics with a high dielectric constant and temperature-stable dielectric properties using hydro-phase method at atmospheric pressure. J. Eur. Ceram. Soc. 37, 2385–2390 (2017)

    Article  Google Scholar 

  30. Y. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, H. Yan, Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci. Rep. 5, 9953 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M.F. Mahmood, M.B. Hossen, Dynamic response of electrical, dielectric and magnetic properties of La-substituted Ni-Cu-Cd bulk ceramics with structural rietveld refinement. J. Mater. Sci. 32(11), 14248–14273 (2021)

    CAS  Google Scholar 

  32. X. Li et al., Synthesizing superior flexible oxide perovskite ceramic nanofibers by precisely controlling crystal nucleation and growth. Small 18(8), 2106500 (2022)

    Article  CAS  Google Scholar 

  33. K. Jiang et al., Importance of uniformity of grain size to reduce dc degradation and improve reliability of ultra-thin BaTiO3-based MLCCs. Ceram. Int. 48(20), 30020–30030 (2022)

    Article  CAS  Google Scholar 

  34. V.D. Fokina et al., Efficiency of energy harvesting and storage using a multilayer capacitor based on BaTi0.86Sn0.14O3 ferroelectric lead-free ceramics. Ceram. Int. 48(22), 32966–32972 (2022)

    Article  CAS  Google Scholar 

  35. S. Zhang et al., Improving the piezoelectric properties of Pb (Ni, Nb) O3-Pb (Hf, Ti) O3 ceramics through Nd2O3 addition. J. Alloys Compd. 960, 170778 (2023)

    Article  CAS  Google Scholar 

  36. W. Liu et al., Comparative study of phase structure, dielectric properties and electrocaloric effect in novel high-entropy ceramics. J. Mater. Sci. 56, 18417–18429 (2021)

    Article  CAS  Google Scholar 

  37. D. Zeng et al., Achieving high energy storage density in BaTiO3-(Bi0.5Li0.5)(Ti0.5Sn0.5)O3 lead-free relaxor ferroelectric ceramics. J. Alloys Compd. 937, 168455 (2023)

    Article  CAS  Google Scholar 

  38. C. Sun et al., Simultaneously with large energy density and high efficiency achieved in NaNbO3-based relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 41(3), 1891–1903 (2021)

    Article  CAS  Google Scholar 

  39. T. Badapanda, Glassy behavior study of dysprosium doped barium zirconium titanate relaxor ferroelectric. J. Adv. Ceram. 3(4), 339–348 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No. R-2023-754.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

MJ: conceptualization, formal analysis, investigation, visualization, writing—original draft, and editing. JD: visualization, review. MAA: visualization, review. NMA: visualization, review. HB: visualization, review. RC: Visualization, review.

Corresponding author

Correspondence to Marwa Jebli.

Ethics declarations

Conflict of interest

The authors declare that they have not any known financial interests or personal relationships that could have an influence upon the presented work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebli, M., Dhahri, J., Albedah, M.A. et al. Studies on Structural and Dielectric Relaxation of Disordered Barium Titanate due to La3+ Doping. J Inorg Organomet Polym 34, 1765–1775 (2024). https://doi.org/10.1007/s10904-023-02916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02916-1

Keywords

Navigation