Skip to main content

Advertisement

Log in

Investigation of Pressure-Dependent Electronic and Optical Properties of Double Perovskites Cs2AgXY6 (X = Bi, In; Y = Cl, Br)

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The electronic, optical and structural properties of Cs2AgXY6 (X = Bi, In; Y = Cl, Br), were investigated under external pressure (0–50 GPa) using the full potential density functional theory. In this study, the Tran–Blaha modified Becke–Johnson (TB-mBJ) functional was used to evaluate the electronic and optical properties of the double perovskites, and the GGA-PBEsol functional was used to examine the structural properties. The formation energy and tolerance factor predict the stability of these compounds. With increasing pressure, the lattice parameters and unit cell volume of these compounds decreased, resulting in a reduction in the bond length between the cations and anions. Comparatively Cs2AgInCl6 has shown a low compressibility. At zero pressure, Cs2AgInBr6 and Cs2AgInCl6 exhibit direct band gap while Cs2AgBiBr6 and Cs2AgBiCl6 has indirect band gap. Band gaps decrease with pressure. High pressure decreases peak height, shifts energy lower, and widens bandwidth in density of states. The density of states plots at zero pressure showed mixed ionic and covalent bonds, and with increasing pressure, a strengthening of covalent bonds is observed. Reflectivity/optical conductivity spectra show redshifts (Cs2AgBiBr6, Cs2AgBiCl6) and blueshifts (Cs2AgInBr6, Cs2AgInCl6). This study provides insights into double perovskite behavior under pressure, aiding material design. Additionally, our work highlights the variations in energy band gap and band structure is dependent on the choice of functional utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data can be obtained on reasonable request.

References

  1. G.E. Eperon et al., Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354(6314), 861–865 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. N.J. Jeon et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. H. Tsai et al., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536(7616), 312–316 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. J.-P. Correa-Baena et al., Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Rong et al., Challenges for commercializing perovskite solar cells. Science 361(6408), eaat8235 (2018)

    Article  PubMed  Google Scholar 

  6. G. Li et al., Near-infrared responsive Z-scheme heterojunction with strong stability and ultra-high quantum efficiency constructed by lanthanide-doped glass. Appl. Catal. B 311, 121363 (2022)

    Article  CAS  Google Scholar 

  7. X. Zhang et al., A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016)

    Article  Google Scholar 

  8. M. Wang et al., Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10(6), 667–672 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. H. Yang et al., Sensing mechanism of an Au–TiO2–Ag nanograting based on Fano resonance effects. Appl. Opt. 62(17), 4431–4438 (2023)

    Article  CAS  PubMed  Google Scholar 

  10. Q. Zhao et al., Double U-groove temperature and refractive index photonic crystal fiber sensor based on surface plasmon resonance. Appl. Opt. 61(24), 7225–7230 (2022)

    Article  CAS  PubMed  Google Scholar 

  11. C. Lu et al., Enhancing catalytic activity of CO2 electrolysis by building efficient and durable heterostructure for solid oxide electrolysis cell cathode. J. Power Sources 574, 233134 (2023)

    Article  CAS  Google Scholar 

  12. R. Ren et al., Efficient sulfur host based on Sn doping to construct Fe2O3 nanospheres with high active interface structure for lithium–sulfur batteries. Appl. Surf. Sci. 613, 156003 (2023)

    Article  CAS  Google Scholar 

  13. Z. Zhang et al., Mo6+–P5+ co-doped Li2ZnTi3O8 anode for Li-storage in a wide temperature range and applications in LiNi0.5Mn1.5O4/Li2ZnTi3O8 full cells. Inorg. Chem. Front. 9(1), 35–43 (2022)

    Article  CAS  Google Scholar 

  14. A.H. Reshak et al., Pressure induced physical variations in the lead free fluoropervoskites XYF3 (X = K, Rb, Ag; Y = Zn, Sr, Mg): optical materials. Opt. Mater. 109, 110325 (2020)

    Article  Google Scholar 

  15. L. Zhang et al., Pressure-induced emission enhancement, band‐gap narrowing, and metallization of halide perovskite Cs3Bi2I9. Angew Chem. Int. Ed. 57(35), 11213–11217 (2018)

    Article  CAS  Google Scholar 

  16. L. Kong, G. Liu, Synchrotron-based infrared microspectroscopy under high pressure: an introduction. Matter. Radiat. Extrem. (2021). https://doi.org/10.1063/5.0071856

    Article  Google Scholar 

  17. H. Zhu et al., Pressure-induced phase transformation and band-gap engineering of formamidinium lead iodide perovskite nanocrystals. J. Phys. Chem. Lett. 9(15), 4199–4205 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. G. Bounos et al., Defect perovskites under pressure: structural evolution of Cs2SnX6 (X = Cl, Br, I). J. Phys. Chem. C 122(42), 24004–24013 (2018)

    Article  CAS  Google Scholar 

  19. C.-J. Lee et al., Observation of pressure-induced direct-to-indirect band gap transition in InP nanocrystals. J. Chem. Phys. 113(5), 2016–2020 (2000)

    Article  CAS  Google Scholar 

  20. J. Zhao et al., Isostructural phase transition in bismuth oxide chloride induced by redistribution of charge under high pressure. J. Phys. Chem. C 119(49), 27657–27665 (2015)

    Article  CAS  Google Scholar 

  21. F. Ke et al., Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt. Nat. Commun. 12(1), 461 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. F. Ji et al., Lead-free halide double perovskite Cs2AgBiBr6 with decreased band gap. Angew. Chem. 132(35), 15303–15306 (2020)

    Article  Google Scholar 

  23. J. Su et al., First-principles study on the structure, electronic, and optical properties of Cs2AgBiBr6−xClx mixed-halide double perovskites. J. Phys. Chem. C 124(9), 5371–5377 (2020)

    Article  CAS  Google Scholar 

  24. M.K. Chini et al., Lead-free, stable mixed halide double perovskites Cs2AgBiBr6 and Cs2AgBiBr6−xClx−A detailed theoretical and experimental study. Chem. Phys. 529, 110547 (2020)

    Article  Google Scholar 

  25. M.N. Islam, J. Podder, Semiconductor to metallic transition in double halide perovskites Cs2AgBiCl6 through induced pressure: a DFT simulation for optoelectronic and photovoltaic applications. Heliyon 8(8), e10032 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. Menedjhi et al., Halide double perovskite Cs2AgInBr6 for photovoltaic’s applications: optical properties and stability. Optik 243, 167198 (2021)

    Article  CAS  Google Scholar 

  27. Z. Zhang et al., Potential applications of halide double perovskite Cs2AgInX6 (X = Cl, Br) in flexible optoelectronics: unusual effects of uniaxial strains. J. Phys. Chem. Lett. 10(5), 1120–1125 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. J. Luo et al., Single-atom Nb anchored on graphitic carbon nitride for boosting electron transfer towards improved photocatalytic performance. Appl. Catal. B 328, 122495 (2023)

    Article  CAS  Google Scholar 

  29. Y. He et al., Revisiting the thermal ageing on the metallised polypropylene film capacitor: from device to dielectric film. High. Volt. 8(2), 305–314 (2023)

    Article  Google Scholar 

  30. K. Schwarz, P. Blaha, G.K. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147(1–2), 71–76 (2002)

    Article  Google Scholar 

  31. P. Blaha et al., Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59(2), 399–415 (1990)

    Article  CAS  Google Scholar 

  32. D.S. Sholl, J.A. Steckel, Density functional theory: a practical introduction (Wiley, Hoboken, 2022)

    Google Scholar 

  33. F. Tran, P. Blaha, K. Schwarz, Band gap calculations with Becke–Johnson exchange potential. J. Phys.: Condens. Matter. 19(19), 196208 (2007)

    Google Scholar 

  34. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  PubMed  Google Scholar 

  35. V.M. Goldschmidt, Die gesetze der krystallochemie. Naturwissenschaften 14(21), 477–485 (1926)

    Article  CAS  Google Scholar 

  36. C. Li et al., Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. Sect B: Struct. Sci. 64(6), 702–707 (2008)

    Article  CAS  Google Scholar 

  37. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. General Crystallogr. 32(5), 751–767 (1976)

    Article  Google Scholar 

  38. V. Sidey, On the effective ionic radii for ammonium. Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 72(4), 626–633 (2016)

    Article  CAS  Google Scholar 

  39. Z. Huang et al., Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations. Phys. B: Condens. Matter. 407(7), 1075–1081 (2012)

    Article  CAS  Google Scholar 

  40. J. Munir et al., Electronic structure, optical and thermal response of lead-free RbAuBr3 and RbAuBr4 perovskites for renewable energy applications. ECS J. Solid State Sci. Technol. 11(12), 123003 (2022)

    Article  CAS  Google Scholar 

  41. J. Wang et al., Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy. Addi. Manuf. 34, 101240 (2020)

    CAS  Google Scholar 

  42. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30(9), 244–247 (1944)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. G.I. Csonka et al., Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 79(15), 155107 (2009)

    Article  Google Scholar 

  44. B. Sahli et al., First-principles prediction of structural, elastic, electronic and thermodynamic properties of the cubic SrUO3-perovskite. J. Alloys Compd. 635, 163–172 (2015)

    Article  CAS  Google Scholar 

  45. M. Roknuzzaman et al., Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci. Rep. 7(1), 14025 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  46. R. Moussa et al., Ab initio investigation of the structural, electronic and optical properties of cubic GaAs1−xPx ternary alloys under hydrostatic pressure. J. Electron. Mater. 44, 4684–4699 (2015)

    Article  CAS  Google Scholar 

  47. Y. Al-Douri, A.H. Reshak, Calculated optical properties of GaX (X = P, As, Sb) under hydrostatic pressure. Appl. Phys. A 104, 1159–1167 (2011)

    Article  CAS  Google Scholar 

  48. E.T. McClure et al., Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28(5), 1348–1354 (2016)

    Article  CAS  Google Scholar 

  49. A.H. Slavney et al., A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138(7), 2138–2141 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. J. Yang, P. Zhang, S.-H. Wei, Band structure engineering of Cs2AgBiBr6 perovskite through order–disordered transition: a first-principle study. J. Phys. Chem. Lett. 9(1), 31–35 (2018)

    Article  CAS  PubMed  Google Scholar 

  51. N. Guechi et al., Elastic, optoelectronic and thermoelectric properties of the lead-free halide semiconductors Cs2 AgBi X6 (X = Cl, Br): ab initio investigation. J. Electron. Mater. 47, 1533–1545 (2018)

    Article  CAS  Google Scholar 

  52. P. Vishnoi, R. Seshadri, A.K. Cheetham, Why are double perovskite iodides so rare? J. Phys. Chem. C 125(21), 11756–11764 (2021)

    Article  CAS  Google Scholar 

  53. N.P. Mathew, N.R. Kumar, R. Radhakrishnan, First principle study of the structural and optoelectronic properties of direct bandgap double perovskite Cs2AgInCl6. Mater. Today: Proc. 33, 1252–1256 (2020)

    CAS  Google Scholar 

  54. S. Du et al., Auger scattering dynamic of photo-excited hot carriers in nano-graphite film. Appl. Phys. Lett. 121(18), 181104 (2022)

    Article  CAS  Google Scholar 

  55. F. Aryasetiawan, O. Gunnarsson, The GW method. Rep. Prog. Phys. 61(3), 237 (1998)

    Article  CAS  Google Scholar 

  56. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003)

    Article  CAS  Google Scholar 

  57. A.K. Singh et al., Sources of electrical conductivity in SnO2. Phys. Rev. Lett. 101(5), 055502 (2008)

    Article  PubMed  Google Scholar 

  58. S. Bhattacharyya, A.K. Singh, Semiconductor-metal transition in semiconducting bilayer sheets of transition-metal dichalcogenides. Phys. Rev. B 86(7), 075454 (2012)

    Article  Google Scholar 

  59. A.P. Nayak et al., Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 5(1), 3731 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. I. Ogunniranye et al., Influence of transition metal doping on the structural and electronic behaviour of quaternary double perovskite, Cs2AgInCl6, using first-principles calculations, in IOP conference series: earth and environmental science. (IOP Publishing, Bristol, 2021)

    Google Scholar 

  61. G. Volonakis et al., Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8(4), 772–778 (2017)

    Article  CAS  PubMed  Google Scholar 

  62. C. Kittel, Introduction to solid state physics (Wiley, Hoboken, 2005)

    Google Scholar 

  63. V. Lucarini et al., Kramers–Kronig relations in optical materials research, vol. 110 (Springer, Berlin, 2005)

    Google Scholar 

  64. G. Murtaza et al., Investigation of structural and optoelectronic properties of BaThO3. Opt. Mater. 33(3), 553–557 (2011)

    Article  CAS  Google Scholar 

  65. G. Murtaza et al., Linear and nonlinear optical response of MgxZn1−xO: a density functional study. Phys. B: Condens. Matter. 406(13), 2632–2636 (2011)

    Article  CAS  Google Scholar 

  66. Y. Zhang et al., Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens. ACS Photonics 8(1), 202–208 (2020)

    Article  CAS  Google Scholar 

  67. F. Yu et al., Molecular engineering of biomimetic donor-acceptor conjugated microporous polymers with full-spectrum response and an unusual electronic shuttle for enhanced uranium (VI) photoreduction. Chem. Eng. J 466, 143285 (2023)

    Article  CAS  Google Scholar 

  68. M. Hadi, R. Vovk, A. Chroneos, Physical properties of the recently discovered Zr2 (Al1−x Bix) C MAX phases. J. Mater. Sci.: Mater. Electron. 27, 11925–11933 (2016)

    CAS  Google Scholar 

  69. H. Mueller, Theory of the photoelastic effect of cubic crystals. Phys. Rev. 47(12), 947 (1935)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SS and GM wrote the main manuscript PS supervised the project and reviewed the manuscript HAA provide the resources, write and reviewed the manuscript.

Corresponding authors

Correspondence to Hessa A. Alsalmah or G. Murtaza.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakeel, S., Song, P., Alsalmah, H.A. et al. Investigation of Pressure-Dependent Electronic and Optical Properties of Double Perovskites Cs2AgXY6 (X = Bi, In; Y = Cl, Br). J Inorg Organomet Polym 34, 1040–1054 (2024). https://doi.org/10.1007/s10904-023-02888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02888-2

Keywords

Navigation