Skip to main content

Advertisement

Log in

Investigation of the Compressive Strength, Ultrasonic Pulse Velocity, Calorimetric, Microstructural and Rheological Properties of the Calcined Laterite-Based Geopolymer Materials

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study aims to investigate the compressive strengths, ultrasonic pulse velocity, calorimetric, microstructural and rheological properties of calcined laterite-based geopolymer materials. Calcined laterite has been used as an iron-rich aluminosilicate and the hardener containing various molar ratios SiO2/Na2O such as 1.6, 1.8, 2.0 and 2.2 have been used for the preparation of geopolymer materials. The 28-days compressive strengths of the geopolymer materials using sodium waterglass containing molar ratios SiO2/Na2O equal to 1.6, 1.8, 2.0 and 2.2 are 49.98, 48.19, 46.65 and 9.35 MPa, respectively. Their maximum ultrasonic pulse velocities are 3200, 2800, 2000 and 1600 m/s, respectively. Their total heat flows are 85.91, 68.42, 18.50 and 16.34 J/g, respectively. The rheological properties of the geopolymer materials indicate the destruction of the flocculation and the homogenization of the particles of calcined laterite during the formation of the fresh geopolymer prepared using hardeners containing the molar ratios SiO2/Na2O equal to 1.6, 1.8 and 2.0. The one from molar ratio SiO2/Na2O equal to 2.2 contains more flocculation and therefore inhibits the geopolymerization process. It was found that the compressive strengths decrease with decreasing the amorphous phase content, the ultrasonic pulse velocities, total heat flow and corroborate the rheological properties of calcined laterite-based geopolymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Davidovits, Geopolymer Chemistry and Applications, 3rd edn. (Institute Geopolymer, Saint-Quentin, 2011), p.612

    Google Scholar 

  2. J.N.F. Nouping, C.R. Kaze, L.L. Duna, A. Gharzouni, I.N. Mbouombuo, E. Kamseu, S. Rossignol, C. Leonelli, Effects of curing cycles on developing strength and microstructure of goethite-rich aluminosilicate (corroded laterite) based geopolymer composites. Mater. Chem. Phys. 270, 124864 (2021). https://doi.org/10.1016/j.matchemphys.2021.124864

    Article  CAS  Google Scholar 

  3. M.G.S. Ribeiro, M.R. Sardela, P.F. Keane, J.S. Lopez, W.M. Kriven, R.A.S. Ribeiro, Lateritic soil geopolymer composites for ceramics and engineering construction applications. Int. J. Appl. Cer. Tech. 19, 2148–2159 (2022). https://doi.org/10.1111/ijac.14046

    Article  CAS  Google Scholar 

  4. A. Anburuvel, N. Sathiparan, G.M.A. Dhananjaya, A. Anuruththan, Characteristic evaluation of geopolymer based lateritic soil stabilization enriched with eggshell ash and rice hush ash for road construction: an experimental investigation. Construct. Build. Mater. 387, 131659 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131659

    Article  CAS  Google Scholar 

  5. C. Banupriya, S. John, R. Suresh, E. Divya, D. Vinitha, Experimental investigations on geopolymer bricks/paver blocks. Ind. Jour. Sci. Tech. 9, 1–5 (2018). https://doi.org/10.17485/ijst/2016/v9i16/92209

    Article  CAS  Google Scholar 

  6. N.S.A. Yaro, M. Napiah, M.H. Sutanto, A. Usman, A.H. Jagaba, A.U. Mani, A. Ahmad, Geopolymer utilization in the pavement industry-an overview. IOP Conf. Ser. Earth Environ. Sci. 1022, 012025 (2022). https://doi.org/10.1088/1755-1315/1022/1/012025

    Article  Google Scholar 

  7. T.V. Nagaraju, B.M. Sumil, M.V. Rao, Utilization of GGBS-Based Geopolymer Lateritic Soils for Sustainable Pavements, in Recent Trends in Civil Engineering Select Proceedings of ICRACE 2021. ed. by A. Sil, N.K. Deniseenelope, R.K. Pancharathi (Springer, Singapore, 2022), pp.429–439. https://doi.org/10.1007/978-981-19-4055-2_34

    Chapter  Google Scholar 

  8. S. Saha, C. Rajasekaran, Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Constr. Build. Mater. 146, 615–620 (2017)

    Article  CAS  Google Scholar 

  9. X. Guan, W. Luo, S. Liu, A.G. Hernandez, H. Do, B. Li, Ultra-high early strength fly ash-based geopolymer paste cured by microwave radiation. Dev. Built Environ. 14, 100139 (2023)

    Article  Google Scholar 

  10. X. Huang, L. Yu, D.W. Li, Y.C. Shiau, S. Li, K.X. Liu, Preparation and properties of geopolymer from blast furnace slag. Mater. Res. Innov. 19, S10-413-S10-419 (2015). https://doi.org/10.1179/1432891715Z.0000000002210

    Article  CAS  Google Scholar 

  11. M.I.I. Ramli, M.A.A.M. Salleh, I.H. Aziz, N.S.M. Zaimi, S.F.M. Amli, M.M.A.B. Abdullah, Influence of sintering temperature on the pore structure of an alkali-activated kaolin based geopolymer. Arch. Met. Mater. 68, 987–989 (2023)

    Article  CAS  Google Scholar 

  12. T.D. Cong, T. Phuong, M.T. Vu, T.H. Nguyen, Effect of calcium hydroxide on compressive strength and microstructure of geopolymer containing admixture of kaolin, fly ash and red mud. Appl. Sci. 13, 5034 (2023)

    Article  CAS  Google Scholar 

  13. A.M.N. Moudio, H.K. Tchakoute, D.L.V. Ngnintedem, F. Andreola, E. Kamseu, C.P. Nanseu-Njiki, C. Lionelli, C.H. Rüscher, Influence of the synthetic calcium aluminate hydrate and the mixture of calcium aluminate and silicate hydrates on the compressive strengths and the microstructure of metakaolin-based geopolymer cements. Mater. Chem. Phys. 264, 124459 (2021)

    Article  CAS  Google Scholar 

  14. C.N. Bewa, H.K. Tchakouté, C. Banenzoué, L. Cakanou, T.T. Mbakop, E. Kamseu, C.H. Rüscher, Acid-based geopolymers using waste fired brick and different metakaolins as raw materials. Appl. Clay Sci. 198, 105813 (2020)

    Article  CAS  Google Scholar 

  15. S. Iftikhar, K. Rashid, E. Ul Haq, I. Zafar, F.K. Alqahtani, M.I. Khan, Synthesis and characterization of sustainable geopolymer green clay bricks: an alternative to burnt clay brick. Constr. Build. Mater. 259, 119659 (2020)

    Article  CAS  Google Scholar 

  16. C.R. Kaze, L.M. Beleuk a Moungam, J.V.S. Metekong, T.S. Alomayri, A. Naghizadeh, L.N. Tchadjie, Thermal behaviour, microstructural changes and mechanical properties of alkali-activated volcanic scoria-fired waste clay brick blends. Dev. Built Environ. 14, 100153 (2023)

    Article  Google Scholar 

  17. J.V.S. Metekong, R.C. Kaze, A. Adesina, J.G.D. Nemaleu, J.N.Y. Djobo, P.N. Lemougna, T. Alomayri, E. Kamseu, U.C. Melo, T.T. Tatietse, Influence of thermal activation and silica modulus on the properties of clayey-lateritic based geopolymer binders cured at room temperature. SILICON 14, 7399–7416 (2022)

    Article  CAS  Google Scholar 

  18. R.C. Kaze, A. Naghizadeh, L.N. Tchadjie, A. Adesina, J.N.Y. Djobo, J.G.D. Nemaleu, E. Kamseu, U.C. Melo, B.A. Tayeh, Lateritic soils based geopolymer materials: a review. Constr. Build. Mater. 344, 128157 (2022)

    Article  Google Scholar 

  19. R.C. Kaze, L.M. Beleuk a Moungam, M. Cannio, R. Rosa, E. Kamseu, U.C.F. Melo, C. Leonelli, Microstructure and engineering properties of Fe2O3 (FeO)-Al2O3-SiO2 based geopolymer composites. J. Clean. Prod. 199, 849–859 (2018)

    Article  CAS  Google Scholar 

  20. J. Davidovits, R. Davidovits, Ferro-sialate geopolymers, technical papers # 27. Geopolym. Inst. Libr. (2020). https://doi.org/10.13140/RG.2.2.25792.89608/2

    Article  Google Scholar 

  21. P.N. Lemougna, K.J.D. MacKenzie, G.N.L. Jameson, H. Rahier, U.C.F. Melo, The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe Mössbauer spectroscopy study. J. Mater. Sci. 48, 5280–5286 (2013)

    Article  CAS  Google Scholar 

  22. C.N. Bewa, H.K. Tchakouté, C.H. Rüscher, E. Kamseu, C. Leonelli, Influence of the curing temperature on the properties of poly(phospho-ferro-siloxo) networks from laterite. SN Appl. Sci. 1, 1–12 (2019)

    Article  Google Scholar 

  23. C.R. Kaze, J.N.Y. Djobo, A. Nana, H.K. Tchakouté, E. Kamseu, U.C.F. Melo, C. Leonelli, H. Rahier, Effect of silicate modulus on the setting, mechanical strength and microstructure of iron-rich aluminosilicate (laterite) based-geopolymer cured at room temperature. Ceram. Inter. 44, 21442–21450 (2018)

    Article  CAS  Google Scholar 

  24. E. Kamseu, C.R. Kaze, F.J.N. Nouping, U.C.F. Melo, S. Rossignol, C. Leonelli, Ferrisilicates formation during the geopolymerization of natural Fe-rich aluminosilicate precursors. Mater. Chem. Phys. 240, 122062 (2020)

    Article  CAS  Google Scholar 

  25. J. Wolf, S. Pirskawetz, A. Zang, Detection of crack propagation in concrete with embedded ultrasonic sensors. Eng. Fract. Mech. 146, 161–171 (2015)

    Article  Google Scholar 

  26. G. Zhao, D. Zhang, L. Zhang, B. Wang, Detection of defects in reinforced concrete structures using ultrasonic nondestructive evaluation with piezoceramic transducers and the time reversal method. Sensors 18, 4176 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  27. K. Gao, K.-L. Lin, Y. Wang, C.-L. Hwang, H.-S. Shiu, Y.-M. Chang, T.-W. Cheng, Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers. Constr. Build. Mater. 53, 503–510 (2014)

    Article  Google Scholar 

  28. M.M. Yadollahi, A. Benli, R. Demirboga, The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites. Constr. Build. Mater. 94, 767–774 (2015)

    Article  CAS  Google Scholar 

  29. H.K. Tchakouté, C.H. Rüscher, S. Kong, N. Ranjbar, Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. J. Build. Eng. 6, 252–261 (2016)

    Article  Google Scholar 

  30. W.K.W. Lee, J.S.J. van Deventer, The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids Surf A Physicochem Eng Asp 211, 115–126 (2002)

    Article  CAS  Google Scholar 

  31. Z.H. Zhang, X. Yao, H.J. Zhu, Role of water in the synthesis of calcined kaolin-based geopolymer. Appl. Clay Sci. 43, 218–223 (2009)

    Article  Google Scholar 

  32. S. Dadsetan, H. Siad, M. Lachemi, O. Mahmoodi, M. Sahmaran, Sodium glass liquid from glass waste as a user-friendly hardener in structural geopolymer systems. Cem. Concr. Comp. 130, 104525 (2022)

    Article  CAS  Google Scholar 

  33. C.N. Bewa, L. Valentini, H.K. Tchakouté, E. Kamseu, J.N.Y. Djobo, M.C. Dalconi, E. Garbin, G. Artioli, Reaction kinetics and microstructural characteristics of iron-rich-laterite-based phosphate binder. Constr. Build. Mater. 320, 126302 (2022)

    Article  Google Scholar 

  34. N. Döbelin, R. Kleeberg, Profex: a graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 48, 1573–1580 (2015)

    Article  Google Scholar 

  35. A. Mohammed, W. Mahmood, K. Ghafor, Shear stress limit, rheological properties and compressive strength of cement-based grout modified with polymers. J. Build. Pathol. Rehabil. 5, 3 (2020)

    Article  Google Scholar 

  36. I. Hager, T. Zdeb, K. Krzemien, The impact of the amount of polypropylene fibres on spalling behaviour and residual mechanical properties of reactive powder concretes. MATEC Web Conf. (2013). https://doi.org/10.1051/matecconf/20130602003

    Article  Google Scholar 

  37. S. Londoño-Restrepo, R. Jeronimo-Cruz, B. Millán-Malo, E. Rivera-Muñoz, M. Rodriguez-García, Effect of the nano crystal size on the x-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci. Rep. 9, 5915 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  38. M. Sofi, J.S.J. van Deventer, P.A. Mendis, G.C. Lukey, Engineering properties of inorganic polymer concretes (IPCs). Cem. Concr. Res. 37, 251–257 (2007)

    Article  CAS  Google Scholar 

  39. T.-P. Huynh, C.-L. Hwang, K.-L. Lin, S.-H. Ngo, Effect of residual rice husk ash on mechanical-microstructural properties and thermal conductivity of sodium-hydroxide-activated bricks. Environ. Prog. Sustain. Energy 37, 1647–1656 (2018)

    Article  CAS  Google Scholar 

  40. M. Verma, N. Dev, Sodium hydroxide effect on the mechanical properties of fly ash-slag based geopolymer concrete. Struct. Concr. 22, 368–379 (2021)

    Article  Google Scholar 

  41. Y. Rifaai, A. Yahia, A. Mostafa, S. Aggoun, E.-H. Kadri, Rheology of fly ash-based geopolymer: effect of NaOH concentration. Constr. Build. Mater. 223, 583–594 (2019)

    Article  CAS  Google Scholar 

  42. H. Xu, J.S.J. van Deventer, The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloids Surf. A Physicochem. Eng. Aspects 216, 27–44 (2003)

    Article  CAS  Google Scholar 

  43. C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew, Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr. Build. Mater. 35, 912–922 (2012)

    Article  Google Scholar 

  44. S.A. Bernal, J.L. Provis, V. Rose, R.M.D. Gutierrez, Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33, 46–54 (2011)

    Article  CAS  Google Scholar 

  45. G. Trtnik, M. Gams, Recent advances of ultrasonic testing of cement based materials at early ages. Ultrasonics 54, 66–75 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. C.R. Kaze, P.N. Lemougna, T. Alomayri, H. Assaedi, A. Adesina, S.K. Das, G.-L. Lecomte-Nana, E. Kamseu, U.C. Melo, C. Leonelli, Characterization and performance evaluation of laterite based geopolymer binder cured at different temperatures. Constr. Build. Mater. 270, 121443 (2021)

    Article  Google Scholar 

  47. D. Mikulic, D. Sekulic, N. Štirmer, D. Bjegovic, Application of ultrasonic methods for early age concrete characterization. In application of contemporary non-destructive testing in engineering, Proceedings of the 8th International Conference of the Slovenian Society for Non-Destructive Testing, Portorož, Slovenia, 1–3 September 2005; Grum, J., Ed.; Slovenian Society for Non-Destructive Tests: Portorož, Slovenia, (2005) pp. 99–108.

  48. S. Zhang, Y. Zhang, Z. Li, Ultrasonic monitoring of setting and hardening of slag blended cement under different curing temperatures by using embedded piezoelectric transducers. Constr. Build. Mater. 159, 553–560 (2018)

    Article  CAS  Google Scholar 

  49. N. Robeyst, E. Gruyaert, C.U. Grosse, N. De Belie, Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity. Cem. Concr. Res. 38, 1169–1176 (2008)

    Article  CAS  Google Scholar 

  50. D.G. Aggelis, T.P. Philippidis, Ultrasonic wave dispersion and attenuation in fresh mortar. NDT E Int. 37, 617–631 (2004)

    Article  CAS  Google Scholar 

  51. W. Zhang, Y. Zhang, L. Liu, G. Zhang, Z. Liu, Investigation of the influence of curing temperature and silica fume content on setting and hardening process of the blended cement paste by an improved ultrasonic apparatus. Constr. Build. Mater. 33, 32–40 (2012)

    Article  Google Scholar 

  52. A. Tutal, S. Partschefeld, J. Schneider, A. Osburg, Effects of bio-based plasticizers, made from starch, on the properties of fresh and hardened metakaolin-geopolymer mortar: basic investigations. Clays Clay Miner. 68, 413–427 (2020)

    Article  Google Scholar 

  53. R. Cao, S. Zhang, N. Banthia, Y. Zhang, Z. Zhang, Interpreting the early-age reaction process of alkali-activated slag by using combined embedded ultrasonic measurement, thermal analysis, XRD, FTIR and SEM. Compos. Part B Eng. 186, 107840 (2020)

    Article  CAS  Google Scholar 

  54. M. Izquierdo, X. Querol, C. Phillipart, D. Antenucci, M. Towler, The role of open and closed curing conditions on the leaching properties of fly ash-slag- based geopolymes. J. Hazard. Mater. 176, 623–628 (2010)

    Article  CAS  PubMed  Google Scholar 

  55. B. Mehdikhani, B.S. Razavi, J. Ahmadi, A. Goharrokhi, The effect of adding nano-silica on the ultrasonic pulse velocity of geopolymer concrete. J. Part. Sci. Technol. 7, 99–105 (2021)

    CAS  Google Scholar 

  56. J.L. Provis, P. Duxson, J.S.J. Van Deventer, G.C. Lukey, The role of mathematical modelling and gel chemistry in advancing geopolymer technology. Chem. Eng. Res. Des. 83, 853–860 (2005)

    Article  CAS  Google Scholar 

  57. M.L. Cao, L. Xu, C. Zhang, Effect of calcium carbonate whisker on rheological properties of cement mortar under different water cement ratio and sand cement ratio. J. Chin. Ceram. Soc. 44, 456–461 (2016)

    Google Scholar 

  58. J. He, C. Cheng, X. Zhu, X. Li, Effect of silica fume on the rheological properties of cement paste with ultra-low water binder ratio. Mater 15, 554 (2022)

    Article  CAS  Google Scholar 

  59. R.F. Eirich, Rheology Theory and Applications (Academic, New York and London, 1960), pp.205–248

    Google Scholar 

  60. H.A. Barners, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier Science, Amsterdam, 1989), pp.115–139

    Google Scholar 

  61. J. Ferguson, Z. Kemblowski, Applied Fluid Rheology (Elsevier Applied Science, London and New York, 1991), pp.199–231

    Google Scholar 

  62. C.R. Kaze, A. Adesina, G.L. Lecomte-Nana, T. Alomayri, E. Kamseu, U.C. Melo, Alkali-activated laterite binders: influence of silica modulus on setting time, rheological behaviour and strength development. Clean. Eng. Technol. 4, 100175 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Pr. Dr Hervé Tchakouté Kouamo gratefully acknowledges Alexander von Humboldt-Stiftung for financial support for this work under the grant N° KAM/1155741 GFHERMES-P. Authors gratefully acknowledge Miss Bewa Nobouassia Christelle for the Pore solutions, Ultrasonic pulse velocity, Isothermal calorimetry and Rheological properties characterisations.

Funding

This study was supported by Alexander von Humboldt-Stiftung, N° KAM/1155741 GFHERMES-P.

Author information

Authors and Affiliations

Authors

Contributions

HKT: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Resources, Writing-original draft, Writing-review and editing. ELH: Methodology, Formal analysis, data curation AMNM: Methodology, Data curation CHR: Project administration, Formal analysis, Resources, Supervision, Validation, Visualization, Data curation.

Corresponding author

Correspondence to Hervé Kouamo Tchakouté.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hseumou, E.L., Moudio, A.M.N., Tchakouté, H.K. et al. Investigation of the Compressive Strength, Ultrasonic Pulse Velocity, Calorimetric, Microstructural and Rheological Properties of the Calcined Laterite-Based Geopolymer Materials. J Inorg Organomet Polym 34, 979–998 (2024). https://doi.org/10.1007/s10904-023-02869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02869-5

Keywords

Navigation