Skip to main content
Log in

Low-Temperature In Situ Reaction Synthesis of Quasi Core–Shell ZnO/rGO Composites for the Efficient Photocatalytic Degradation of MB

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Quasi core–shell ZnO/rGO composites were prepared from Zn2(OH)2CO3 and graphite oxide (GO) as raw materials by solid-phase reaction. The effects of GO content and heating rate on the photocatalytic performance of the products were studied. XRD results showed ZnO/rGO composites were obtained at 300 °C for 2 h, and transmission electron microscopy results showed graphene was coated with ZnO nanoparticles with a particle size of about 20–50 nm and formed a quasi core–shell structure. The photocatalytic experiment results indicated the ZnO/rGO composites exhibited good photocatalytic performance. Under simulated sunlight irradiation, ZnO/30% rGO composite materials demonstrated the best photocatalytic activity for methylene blue, with a degradation rate of 99.6% after 60 min of illumination. Finally, a photocatalysis mechanism of quasi core–shell ZnO/RGO composites was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. N. Mohaghegh, M. Tasviri, E. Rahimi, M.R. Gholami, Appl. Surf. Sci. 351, 216 (2015). https://doi.org/10.1016/j.apsusc.2015.05.135

    Article  CAS  Google Scholar 

  2. N. Mohaghegh, M. Tasviri, A. Abedini, J. Iran. Chem. Soc. 16, 1207 (2019). https://doi.org/10.1007/s13738-019-01595-5

    Article  CAS  Google Scholar 

  3. N. Mohaghegh, L. Zeidabadi-Nejad, M. Tasviri, Prog. React. Kinet. Mech. 40, 261 (2015). https://doi.org/10.3184/146867815x14297059619399

    Article  CAS  Google Scholar 

  4. N. Mohaghegh, M. Tasviri, E. Rahimi, M.R. Gholami, Mater. Sci. Semi. Proc. 21, 167 (2014). https://doi.org/10.1016/j.mssp.2013.12.023

    Article  CAS  Google Scholar 

  5. K.S. Novoselov, V.I. Fal’ko, L.P.L. Colombo, P. Gellert, M.G. Schwab, K.W. Kim, Nature 490, 192 (2012). https://doi.org/10.1038/nature11458

    Article  CAS  PubMed  ADS  Google Scholar 

  6. M. Tasviri, F. Armandsefat, N. Mohaghegh, Prog. React. Kinet. Mech. 41, 277 (2016). https://doi.org/10.3184/146867816X14702308373591

    Article  CAS  Google Scholar 

  7. N. Mohaghegh, M. Faraji, A. Abedini, J. Inorg. Organomet. Polym. Mater. 29, 572 (2019). https://doi.org/10.1007/s10904-018-1032-3

    Article  CAS  Google Scholar 

  8. R. Cai, J.G. Wu, L. Sun, Y.J. Liu, T. Fang, S. Zhu, S.Y. Li, Y. Wang, L.F. Guo, C.W. Zhao, A. Wei, Mater. Des. 90, 839 (2016). https://doi.org/10.1016/j.matdes.2015.11.020

    Article  CAS  Google Scholar 

  9. K.L. Mary, J.V. Manonmani, N. Shobanadevi, J. Indian. Chem. Soc. 100, 100890 (2023). https://doi.org/10.1016/j.jics.2023.100890

    Article  CAS  Google Scholar 

  10. G.M. Neelgund, A. Oki, Mater. Res. Bull. 129, 110911 (2020). https://doi.org/10.1016/j.materresbull.2020.110911

    Article  CAS  Google Scholar 

  11. S. Kumar, A. Dhiman, P. Sudhagar, V. Krishnan, Appl. Surf. Sci. 447, 802 (2018). https://doi.org/10.1016/j.apsusc.2018.04.045

    Article  CAS  ADS  Google Scholar 

  12. C. Hao, Y.L. Yang, Y.R. Shen, F. Feng, X.H. Wang, Y.T. Zhao, C.W. Ge, Mater. Des. 89, 864 (2016). https://doi.org/10.1016/j.matdes.2015.10.041

    Article  CAS  Google Scholar 

  13. L. Wang, Z. Li, J. Chen, Y.N. Huang, H.J. Zhang, H.D. Qiu, Environ. Pollut. 249, 801 (2019). https://doi.org/10.1016/j.envpol.2019.03.071

    Article  CAS  PubMed  Google Scholar 

  14. R. Yadav, V. Kumar, V. Saxena, P. Singh, V.K. Singh, Ceram. Int. 45, 24999 (2019). https://doi.org/10.1016/j.ceramint.2019.04.142

    Article  CAS  Google Scholar 

  15. J.M. Lee, Y.B. Pyun, J. Yi, J.W. Choung, W.I. Park, J. Phys. Chem. C. 113, 19134 (2009). https://doi.org/10.1021/jp9078713

    Article  CAS  Google Scholar 

  16. T. Lu, L.K. Pan, H.B. Li, G. Zhu, T. Lv, X.J. Liu, Z. Sun, T. Chen, D.H.C. Chua, J. Alloys. Compd. 509, 5488 (2011). https://doi.org/10.1016/j.jallcom.2011.02.136

    Article  CAS  Google Scholar 

  17. H.M. Shao, X.Y. Shen, Z.M. Wang, Adv. Mater. Res. 1004, 665 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1004-1005.665

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Key scientific and technological projects in Henan Province (212102210465), Key scientific research project plan of colleges and universities in Henan Province (22A430041, 22B430035), Take the Lead Science and Technology Project of Henan Province (211110231200); Achievement cultivation project of Key Program/Major Program in Zhongyuan University of Technology (K2020ZDPY05).

Funding

Funding was provide by Key scientific research project plan of colleges and universities in Henan Province (Grant No. 22A430041).

Author information

Authors and Affiliations

Authors

Contributions

Contributions Chong wang and Baoyan Liang the primary responsibility for the design of the work. Chong wang, Baoyan Liang, Zheng Tian, Jieting Zhao, Yitong Liu, Nan Wang substantial contributions to the work and analysis. Chong wang, Baoyan Liang, Zheng Tian, Jieting Zhao, Nan Wang contributed to the interpretation of the data. Zheng Tian, Jieting Zhao, Nan Wang drafting and revising the work critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chong Wang or Baoyan Liang.

Ethics declarations

Competing interests

The authors have no relevant fnancial or nonfnancial interests to disclose.

Ethical Approval

We declare that we have no fnancial and personal relationships with other people or organizations that can inappropriately infuence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as infuencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Liang, B., Tian, Z. et al. Low-Temperature In Situ Reaction Synthesis of Quasi Core–Shell ZnO/rGO Composites for the Efficient Photocatalytic Degradation of MB. J Inorg Organomet Polym 34, 655–663 (2024). https://doi.org/10.1007/s10904-023-02856-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02856-w

Keywords

Navigation