Skip to main content

Advertisement

Log in

Improvement of the Nonlinear and Dielectric Properties of CaCu3Ti4O12 Ceramics by Nickel Doping

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

CaCu3Ti4O12 (CCTO) ceramics have been widely demonstrated due to their high dielectric constant and are considered potential materials for capacitor applications. However, its high dielectric loss (tanδ), which is greater than 0.1, makes it unsuitable for a lot of uses. Generally, CCTO doped with Ni ions exhibits low nonlinear properties and a high tanδ. In this work, CaCu2.9Ni0.1Ti4O12 (with x = 0/0.1/0.2) ceramics were synthesized by a semi-wet route. Significantly, the CaCu2.8Ni0.2Ti4O12 (Ni02) ceramic revealed an enhancement in breakdown electric voltage (Eb≈ 4208 V/cm) and nonlinear coefficient (α ≈ 7.69) with a considerably decrease in dielectric loss (tanδ ≈ 0.017). The mean grain size for Ni02 ceramic decreased from 6.15 to 2.23 μm. Density increased at first from 91.05 to 92.88% and then decreased by 89.6% with grain size reduction. The decrease in its mean grain size was attributed to the incorporation of Ni ions into Ti sites, as explained by DRX, EDS, and Raman results. The band gap energy increased from 2.25 eV for undoped CCTO ceramic to 3.54 eV for Ni02 ceramic. Additionally, all the ceramic samples present a high dielectric constant (ε) in the range of 104–105. According to the complex impedance spectroscopy results, the electrically heterogeneous CCTO microstructure is responsible for the high dielectric response. Moreover, the enhancement of dielectric and electric properties is attributed to the grain boundary effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H.S. Mohanty, S.K. Sharm, RaviKant, P.K. Kulriya, A. Kumar, R. Thomas, D.K. Pradhan, Enhanced functional properties of soft polymer–ceramic composites by swift heavy ion irradiation. Phys. Chem. Chem. Phys. 21(24629), 24642 (2019). https://doi.org/10.1039/C9CP04206G

    Article  Google Scholar 

  2. H.S. Mohanty, Ravikant, A. Kumar, P.K. Kulriya, R. Thomas, D.K. Pradhan, Dielectric/ferroelectric properties of ferroelectric ceramic dispersed poly (vinylidene fluoride) with enhanced β-phase formation. Mater. Chem. Phys. 230, 221–230 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.055

    Article  CAS  Google Scholar 

  3. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J Solid State Chem. 151, 323–325 (2000). https://doi.org/10.1006/jssc.2000.8703

    Article  CAS  Google Scholar 

  4. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153–2155 (2002). https://doi.org/10.1063/1.1463211

    Article  CAS  Google Scholar 

  5. R. Yu, H. Xue, Z. Cao, L. Chen, Z. Xiong, Effect of oxygen sintering atmosphere on the electrical behavior of CCTO ceramics. J. Eur. Ceram. Soc. 32, 1245–1249 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.039

    Article  CAS  Google Scholar 

  6. Z. Yang, L. Zhang, X. Chao, L. Xiong, J. Liu, High permittivity and low dielectric loss of the Ca1 – xSrxCu3Ti4O12 ceramics. J. Alloys Compd. 509, 8716–8719 (2011). https://doi.org/10.1016/j.jallcom.2011.06.039

    Article  CAS  Google Scholar 

  7. B. Bochu, M.N. Deschizeaux, J.C. Joubert, A. Collomb, J. Chenavas, M. Marezio, Synthesis and characterization of a series of perovskite titanates isostructural with CaCu3(Mn4)O12. J Solid State Chem. 29, 291–298 (1979)

    Article  CAS  Google Scholar 

  8. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001). https://doi.org/10.1126/science.1061655

    Article  CAS  PubMed  Google Scholar 

  9. A.P. Litvinchuk, C.L. Chen, N. Kolev, V.N. Popov, V.G. Hadjiev, M.N. Lliev, R.P. Bontchev, A.J. Jacobson, Optical properties of high-dielectric-constant CaCu3Ti4O12 films. Phys. Status Solidi A 195, 453–458 (2003). https://doi.org/10.1002/pssa.200305930

    Article  CAS  Google Scholar 

  10. T.T. Fang, H.K. Shiau, Mechanism for developing the boundary barrier layers of CaCu3Ti4O12. J. Am. Ceram. Soc. 87, 2072–2079 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb06362.x

    Article  CAS  Google Scholar 

  11. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidi, Origin of apparent colossal dielectric constants. Phys. Rev. B 66, 052105 (2002). https://doi.org/10.1103/PhysRevB.66.052105

    Article  CAS  Google Scholar 

  12. G. Chiodelli, V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni, M.C. Mozzati, P. Lupotto, Electric and dielectric properties of pure and doped CaCu3Ti4O12 perovskite materials. Solid State Commun. 132, 241–246 (2004). https://doi.org/10.1016/j.ssc.2004.07.058

    Article  CAS  Google Scholar 

  13. D. Capsoni, M. Bini, V. Massarotti, G. Chiodelli, M.C. Mozzati, C.B. Azzoni, Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12. J. Solid State Chem. 177, 4494–4500 (2004). https://doi.org/10.1016/j.jssc.2004.09.009

    Article  CAS  Google Scholar 

  14. B.S. Prakash, K.B. Varma, The influence of the segregation of Cu-rich phase on the microstructural and impedance characteristics of CaCu3Ti4O12 ceramics. J. Mater. Sci. 42, 7467–7477 (2007). https://doi.org/10.1007/s10853-006-1251-9

    Article  CAS  Google Scholar 

  15. D. Xu, K. He, R. Yu, L. Jiao, H. Yuan, X. Sun, G. Zhao, H. Xu, X. Cheng, Effect of AETiO (AE = Mg, Ca, Sr) doping on dielectric and varistor characteristics of CaCu3Ti4O12 ceramic prepared by the sol–gel process. J. Alloys Compd. 592, 220–225 (2014). https://doi.org/10.1016/j.jallcom.2013.12.264

    Article  CAS  Google Scholar 

  16. T. Li, D. Liu, H. Dai, H. Xiang, Z. Chen, H. He, Z. Chen, Effect of defect on the nonlinear and dielectric property of ca(1–x)SrxCu3Ti4O12 ceramics synthesized by sol–gel process. J. Alloys Compd. 599, 145–149 (2014). https://doi.org/10.1016/j.jallcom.2014.02.076

    Article  CAS  Google Scholar 

  17. L.F. Xu, P.B. Qi, S.S. Chen, R.L. Wang, C.P. Yang, Dielectric properties of bismuth doped CaCu3Ti4O12 ceramics. Mater. Sci. Eng. B 177, 494–498 (2012). https://doi.org/10.1016/j.mseb.2012.02.001

    Article  CAS  Google Scholar 

  18. Z. Yang, Y. Zhang, G. You, K. Zhang, R. Xiong, J. Shil, Dielectric and electrical transport properties of the Fe3+-doped CaCu3Ti4O12. J. Mater. Sci. Technol. 28, 1145–1150 (2012). https://doi.org/10.1016/S1005-0302(12)60184-4

    Article  Google Scholar 

  19. C.H. Zhang, K. Zhang, H.X. Xu, Q. Song, Y.T. Yang, R.H. Yu, D. Xu, X.N. Cheng, Microstructure and electrical properties of sol-gel derived Ni-doped CaCu3Ti4O12 ceramics. Trans. Nonferrous Met. Soc. China 22, 127–132 (2012). https://doi.org/10.1016/S1003-6326(12)61696-3

    Article  CAS  Google Scholar 

  20. A.K. Rai, K.D. Mandala, D. Kumarb, O. Parkashb, Characterization of nickel doped CCTO: CaCu2.9Ni0.1Ti4O12 and CaCu3Ti3.9Ni0.1O12 synthesized by semi-wet route. J. Alloys Compd. 491, 507–512 (2010). https://doi.org/10.1016/j.jallcom.2009.10.247

    Article  CAS  Google Scholar 

  21. T. Li, J. Chen, D. Liu, Z. Zhang, Z. Chen, Z. Li, X. Cao, B. Wang, Effect of NiO-doping on the microstructure and the dielectric properties of CaCu3Ti4O12 ceramics. Ceram. Int. 40, 9061–9067 (2014). https://doi.org/10.1016/j.ceramint.2014.01.119

    Article  CAS  Google Scholar 

  22. S. Senda, S. Rhouma, E. Torkani, A. Megriche, C. Autret, Effect of nickel substitution on electrical and microstructural properties of CaCu3Ti4O12 ceramic. J. Alloys Compd. 698, 152–158 (2017). https://doi.org/10.1016/j.jallcom.2016.12.096

    Article  CAS  Google Scholar 

  23. A.K. Rai, K.D. Mandala, D. Kumarb, O. Parkash, Dielectric properties of CaCu3Ti4 – xCoxO12 (x = 0.10, 0.20, and 0.30) synthesized by semi-wet route. Mat. Chem. Phys. 122, 217–223 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.037

    Article  CAS  Google Scholar 

  24. N.A. Zhuk, N.A. Sekushin, M.G. Krzhizhanovskaya, V.A. Belyy, R.I. Korolev, Electrical properties of Ni-doped CaCu3Ti4O12 ceramics. Solid State Ion 364, 115633 (2021). https://doi.org/10.1016/j.ssi.2021.115633

    Article  CAS  Google Scholar 

  25. L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju, Microstructure, dielectric properties and impedance spectroscopy of Ni doped CaCu3Ti4O12 ceramics. RSC Adv. 6, 55984–55989 (2016). https://doi.org/10.1039/C6RA07726A

    Article  CAS  Google Scholar 

  26. J. Boonlakhorn, B. Putasaeng, P. Thongbai, Origin of significantly enhanced dielectric response and nonlinear electrical behavior in Ni2+–doped CaCu3Ti4O12: influence of DC bias on electrical properties of grain boundary and associated giant dielectric properties. Ceram. Int. 45, 69446949 (2019). https://doi.org/10.1016/j.ceramint.2018.12.192

    Article  CAS  Google Scholar 

  27. J. Wang, Z. Lu, T. Deng, C. Zhong, Z. Chen, Improved dielectric properties in a’-site nickel-doped CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 100, 4021–4032 (2017). https://doi.org/10.1111/jace.14960

    Article  CAS  Google Scholar 

  28. L. Liu, Y. Huang, Y. Li, D. Shi, S. Zheng, S. Wu, L. Fang, C. Hu, Dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics modified with NiO, SnO2, SiO2, and Al2O3 additives. J. Mater. Sci.: Mater. Electron. 47, 2294–2299 (2012). https://doi.org/10.1007/s10853-011-6043-1

    Article  CAS  Google Scholar 

  29. N.A. Zhuk, S.V. Nekipelov, V.N. Sivkov, B.A. Makeev, R.I. Korolev, V.A. Belyy, M.G. Krzhizhanovskaya, M.M. Ignatova, Magnetic susceptibility, XPS and NEXAFS spectroscopy of Ni-doped CaCu3Ti4O12 ceramics. Mater. Chem. Phys. 252, 123310 (2020). https://doi.org/10.1016/j.matchemphys.2020.123310

    Article  CAS  Google Scholar 

  30. M. Amir, A. Baykal, S. Guner, M. Sertkol, H. Sozeri, M. Toprak, Synthesis and characterization of CoxZn12xAlFeO4 nanoparticles. J. Inorg. Organomet. Polym. 25, 747–754 (2015). https://doi.org/10.1007/s10904-014-0153-6

    Article  CAS  Google Scholar 

  31. S.F. Bdewi, O.G. Abdullah, B.K. Aziz, A.A.R. Mutar, Synthesis, structural and optical characterization of MgO Nanocrystalline embedded in PVA Matrix. J. Inorg. Organomet. Polym. 26, 326–334 (2016). https://doi.org/10.1007/s10904-015-0321-3

    Article  CAS  Google Scholar 

  32. A. Manikandan, E. Hema, M. Durka, M.A. Selvi, T. Alagesan, S.A. Ant, Mn2+ Doped NiS (MnxNi1–xS: x = 0.0, 0.3 and 0.5) nanocrystals: structural, morphological, opto-magnetic and Photocatalytic Properties. J. Inorg. Organomet. Polym. 25, 804–815 (2015). https://doi.org/10.1007/s10904-014-0163-4

    Article  CAS  Google Scholar 

  33. S. Saleem, M.H. Jameel, A. Rehman, M.B. Tahir, M.I. Irshad, Z.Y. Jiang, R.Q. Malik, A.A. Hussain, A. Rehman, A.H. Jabbar, A.Y. Alzahrani, M.A. Salem, M.M. Hessien, Evaluation of structural, morphological, optical, and electrical properties of zinc oxide semiconductor nanoparticles with microwave plasma treatment for electronic device applications. J. Mater. Res. Technol. 19, 2126–2134 (2022). https://doi.org/10.1016/j.jmrt.2022.05.190

    Article  CAS  Google Scholar 

  34. S. Saleem, M.H. Jameel, N. Akhtar, N. Nazir, A. Ali, A. Zaman, A. Rehman, S. Butt, F. Sultana, M. Mushtaq, J.H. Zeng, M. Amami, K. Althubeiti, Modification in structural, optical, morphological, and electrical properties of zinc oxide (ZnO) nanoparticles (NPs) by metal (Ni, Co) dopants for electronic device applications. Arab. J. Chem. 15, 103518 (2022). https://doi.org/10.1016/j.arabjc.2021.103518

    Article  CAS  Google Scholar 

  35. V. Kumara, S. Pandeya, A. Kumara, M. Kumar Vermaa, S. Singha, V. Shankar Raia, D. Prajapatia, T. Dasb, A. Sharmac, C. Lal Prajapatd, A. Gangware, K.D. Mandala, Investigation of dielectric, magnetic and impedance spectroscopic properties of CaCu3 – XMnXTi4–XMnXO12 (X = 0.10) nano-ceramic synthesized through semi-wet route. J. Mater. Res. Technol. 9, 12936–12945 (2020). https://doi.org/10.1016/j.jmrt.2020.09.032

    Article  CAS  Google Scholar 

  36. L. Singh, U.S. Rai, N.B. Singh, Y. Lee, D.K. Mahato, et al. Dielectric properties of CaCu3 – xMgxTi4O12 (x = 0.20 and 0.50) material synthesized by the semi-wet route for energy storage capacitor. Proc. SPIE Smart Biomedical and Physiological Sensor Technology XVI, Vol. 11020, (2019) https://doi.org/10.1117/12.2515634

  37. S. Rhouma, A. Megriche, M.E. Amrani, S. Said, S. Roger, C. Autret-Lambert, Effect of Sr/Mg co-doping on the structural, dielectric, and electrical properties of CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron. 33, 4535–4549 (2022). https://doi.org/10.1007/s10854-021-07645-0

    Article  CAS  Google Scholar 

  38. S. Rhouma, A. Megriche, M. El Amrani, S. Said, C. Autret-Lambert, Influence of SrTiO3 on microstructure and electrical properties of Ca0.9Sr0.1Cu2.9Mg0.1Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron. 34, 700 (2023). https://doi.org/10.1007/s10854-023-10097-3

    Article  CAS  Google Scholar 

  39. X. Ouyang, M. Habib, P. Cao, S. Wei, Z. Huang, W. Zhang, W. Gao, Enhanced extrinsic dielectric response of TiO2 modified CaCu3Ti4O12 ceramics. Ceram. Int. 41, 13447–13454 (2015). https://doi.org/10.1016/j.ceramint.2015.07.133

    Article  CAS  Google Scholar 

  40. S. Rhouma, S. Saîd, C. Autret, S. De Almeida-Didry, M. El Amrani, A. Megriche, Comparative studies of pure, Sr-doped, Ni-doped and co-doped CaCu3Ti4O12 ceramics: enhancement of dielectric properties. J Alloys Compd. 717, 121–126 (2017). https://doi.org/10.1016/j.jallcom.2017.05.053

    Article  CAS  Google Scholar 

  41. M. Matos, L. Walmsley, Cation-oxygen interaction and oxygen stability in CaCu3Ti4O12 and CdCu3Ti4O12 lattices. J. Phys. Condens. Matter 18, 1793–1803 (2006). https://doi.org/10.1088/0953-8984/18/5/030

    Article  CAS  Google Scholar 

  42. A. Zaafouri, M. Megdiche, M. Gargouri, Studies of electric, dielectric, and conduction mechanism by OLPT model of Li4P2O7. Ionics 21, 1867–1879 (2015). https://doi.org/10.1007/s11581-015-1365-7

    Article  CAS  Google Scholar 

  43. P. Thongbai, C. Masingboon, S. Maensiri, T. Yamwong, S. Wongsaenmai, R. Yimnirun, Giant dielectric behaviour of CaCu3Ti4O12 subjected to post-sintering annealing and uniaxial stress. J Phys: Condens Matter 19, 236208 (2007). https://doi.org/10.1088/0953-8984/19/23/236208

    Article  CAS  Google Scholar 

  44. P. Thongbai, J. Jumpatam, T. Yamwong, S. Maensiri, Effects of Ta5+ doping on microstructure evolution, dielectric properties and electrical response in CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 32, 2423–2430 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.048

    Article  CAS  Google Scholar 

  45. T.B. Adams, D.C. Sinclair, A.R. West, Characterization of grain boundary impedances in fine-and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 094124 (2006). https://doi.org/10.1016/j.jeurceramsoc.2012.02.048

    Article  CAS  Google Scholar 

  46. T. Li, Z. Chen, Y. Su, L. Su, J. Zhang, Effect of grain size and Cu-rich phase on the electric properties of CaCu3Ti4O12 ceramics. J. Mater. Sci. 44, 6149–6154 (2009). https://doi.org/10.1007/s10853-009-3850-8

    Article  CAS  Google Scholar 

  47. R. Mauczok, R. Wernicke, Ceramic boundary-layer capacitors. Philips Tech. Rev. 41, 338–346 (1983)

    CAS  Google Scholar 

  48. L. Marchin, S. Guillemet-Fritsch, B. Durand, A.A. Levchenko, A. Navrotsky, T. Lebey, Grain growth-controlled giant permittivity in soft chemistry CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 91, 485–489 (2008). https://doi.org/10.1111/j.1551-2916.2007.02174.x

    Article  CAS  Google Scholar 

  49. S. DeAlmeida-Didry, C. Autret, A. Lucas, C. Honstettre, F. Pacreau, F. Gervais, Leading role of grain boundaries in colossal permittivity of doped and undoped CCTO. J. Eur. Ceram. Soc. 34, 3649–3654 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.06.009

    Article  CAS  Google Scholar 

  50. J. Guo, L. Sun, Q. Ni, E. Cao, W. Hao, Y. Zhang, Y. Tian, L. Ju, Dielectric properties and nonlinear I–V electrical behavior of (Ni2+,Zr4+) co-doping CaCu3Ti4O12 ceramics. Appl. Phys. A 124, 635 (2018). https://doi.org/10.1007/s00339-018-2060-0

    Article  CAS  Google Scholar 

  51. J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, Significantly improved giant dielectric response in giant dielectric response in CaCu2.95Ni0.05Ti4–xGexO12 (x = 0.05, 0.10) ceramics. Mater. Today Commun. 21, 100633 (2019). https://doi.org/10.1016/j.mtcomm.2019.100633

    Article  CAS  Google Scholar 

  52. T. Fang, L. Mei, H. Ho, Effects of Cu stoichiometry on the microstructures, barrier layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12. Acta Mater. 54, 2867–2875 (2006). https://doi.org/10.1016/j.actamat.2006.02.037

    Article  CAS  Google Scholar 

  53. E.A. Patterson, S. Kwon, C.C. Huang, D.P. Cann, Effects of ZrO2 additions on the dielectric properties of CaCu3Ti4O12. Appl. Phys. Lett. 87, 182911 (2005). https://doi.org/10.1063/1.2126142

    Article  CAS  Google Scholar 

  54. C. Mua, H. Zhang, Y. He, P. Liu, J. Shen, The origin of multiple dielectric relaxation processes in Fe-substituted CaCu3Ti4O12 ceramics. Mater. Sci. Eng. B 162, 195–199 (2009). https://doi.org/10.1016/j.mseb.2009.04.012

    Article  CAS  Google Scholar 

  55. P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, K. Wu, Z. Wang, J. Li, Improved dielectric and nonlinear properties of CaCu3Ti4O12 ceramics with Cu-rich phase at grain boundary layers. Ceram. Int. 45, 1508215090 (2019). https://doi.org/10.1016/j.ceramint.2019.04.247

    Article  CAS  Google Scholar 

  56. J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, Representations of impedance spectra of ceramics Part I. Simulated study cases. Mater. Res. Bull. 35, 955–964 (2000). https://doi.org/10.1088/0022-3727/42/5/055404

    Article  CAS  Google Scholar 

  57. J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990). https://doi.org/10.1002/adma.19900020304

    Article  CAS  Google Scholar 

  58. Y. Yu, Q. Wang, W.Q. Khan, Dielectric properties of Ni and Nb doped CaCu. Ceram. J. Phys. Conf. Ser. 1885, 032055 (2021). https://doi.org/10.1088/1742-6596/1885/3/032055

    Article  CAS  Google Scholar 

  59. Y. Yan, L. Jin, L. Feng, G. Cao, Decrease of dielectric loss in giant dielectric constant CaCu3Ti4O12 ceramics by adding CaTiO3. Mater. Sci. Eng. B 130, 146–150 (2006). https://doi.org/10.1016/j.mseb.2006.02.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

SR: Conceptualization, methodology, visualization, writing—original draft, preparation, formal analysis, and investigation. AM: Project administration, and writing—review. ES: Investigation. SS: Investigation. CA: Project administration, and writing—review.

Corresponding author

Correspondence to Salam Rhouma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhouma, S., Megriche, A., Souidi, E. et al. Improvement of the Nonlinear and Dielectric Properties of CaCu3Ti4O12 Ceramics by Nickel Doping. J Inorg Organomet Polym 34, 221–234 (2024). https://doi.org/10.1007/s10904-023-02816-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02816-4

Keywords

Navigation