Skip to main content
Log in

DFT Insight into Structural, Electronic, Optical and Thermoelectric Properties of Eco-Friendly Double Perovskites Rb2GeSnX6 (X = Cl, Br) for Green Energy Generation

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Halide double perovskites in the form of A2BIBIIIX6 present a rich compositional space that holds promise for discovering novel materials possessing intriguing properties applicable in diverse fields. However, the photovoltaic efficiency of halide double perovskites has been hindered by the large indirect bandgaps in the currently known materials. Nonetheless, the potential applications of halide double perovskites extend beyond outdoor photovoltaics, encompassing memory devices, thermoelectric, light-emitting diodes, X-ray detectors, sensors, and many more. Herein, we report novel metal lead-free double halide perovskites Rb2GeSnX6 (X = Cl, Br) for renewable energy applications via density functional theory calculations. The compounds are found thermodynamically stable based on the negative formation and Gibbs free energies values. The tolerance factor confirms the structural stability in the cubic crystalline form, while the stable phonon dispersion spectrum supports dynamical stability. We observe an increase in the lattice constant and bulk modulus as the halogen anions change (i.e., Cl replacing Br). The calculated direct band gaps, along the Γ symmetry point are found to be 1.296 eV for Rb2GeSnCl6 and 0.799 eV for Rb2GeSnBr6, using theTran and Blaha modified Becke and Johnson potential. To assess their potential in solar cells and optoelectronic devices, we analyze the dielectric function, optical conductivity, and reflectivity. In addition, we investigate their thermoelectric parameters such as electronic and thermal conductivities, carrier concentration, electrical conductivity, Seebeck coefficient, and figure of merit. These findings validate the potential of these compounds for thermoelectric power generation at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Laboratory NREL, Best research-cell efficiency chart (2022), https://www.nrel.gov/pv/cell-efficiency.html

  2. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F.D. Angelis, H. Boyen, Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015)

    Google Scholar 

  3. M. Gratzel, The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014)

    PubMed  CAS  Google Scholar 

  4. J.R. Durrant, S.A. Haque, Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1655–1660 (2016)

    Google Scholar 

  5. M.J. Kosnett, R.P. Wedeen, S.J. Rothenberg, K.L. Hipkins, B.L. Materna, B.S. Schwartz, H. Hu, A. Woolf, Recommendations for medical management of adult lead exposure. Environ. Health Perspect. 115(3), 463–471 (2007)

    PubMed  CAS  Google Scholar 

  6. A. Jodlowski, D. Rodrıguez-Padron, R. Luque, G. de Miguel, Alternative perovskites for photovoltaics. Adv. Energy Mater. 8, 1703120 (2018)

    Google Scholar 

  7. F. Giustino, H.J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016)

    CAS  Google Scholar 

  8. Z. Xiao, Z. Song, Y. Yan, From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31, 1803792 (2019)

    CAS  Google Scholar 

  9. M. Saeed, I.U. Haq, A.S. Saleemi, S.U. Rehman, B.U. Haq, A.R. Chaudhry, I. Khan, First-principles prediction of the ground-state crystal structure of double-perovskite halides Cs2AgCrX6 (X = Cl, Br, and I). J. Phys. Chem. Solids 160, 110302 (2022)

    CAS  Google Scholar 

  10. S. Alnujaim, A. Bouhemadou, M. Chegaar, A. Guechi, S. Bin-Omran, R. Khenata, Y. Al-Douri, W. Yang, H. Lu, Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites. Eur. Phys. J. B 95, 114 (2022)

    CAS  Google Scholar 

  11. Md.N. Islam, J. Podder, T. Saha, P. Rani, Semiconductor to metallic transition under induced pressure in Cs2AgBiBr6 double halide perovskite: a theoretical DFT study for photovoltaic and optoelectronic applications. RSC Adv. 11, 24001 (2021)

    PubMed  PubMed Central  CAS  Google Scholar 

  12. E.E. Ateia, D. Gawad, M. Mosry, M.M. Arman, Synthesis and functional properties of La2FeCrO6 based nanostructures. J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02699-5

    Article  Google Scholar 

  13. S.A. Mir, D.C. Gupta, Structural and mechanical stabilities, electronic, magnetic and thermophysical properties of double perovskite Ba2LaNbO6: probed by DFT computation. Int. J. Energy Res. 45, 14603–14611 (2021)

    CAS  Google Scholar 

  14. S. Thawarkar, S.R. Rondiya, N.Y. Dzade, N. Khupse, S. Jadkar, Experimental and theoretical investigation of the structural and opto-electronic properties of Fe-doped lead-free Cs2AgBiCl6 double perovskite. Chem. Eur. J. 27, 7408–7417 (2021)

    PubMed  CAS  Google Scholar 

  15. A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D. Dunbar, A.R. Buckley, D.G. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950 (2014)

    CAS  Google Scholar 

  16. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    PubMed  CAS  Google Scholar 

  17. A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019)

    PubMed  CAS  Google Scholar 

  18. R. Ullah, M.A. Ali, A. Khan, R.A. Alshgari, Effect of cation exchange on structural, electronic, magnetic and transport properties of Ba2MReO6 (M = In, Gd), MSS Mushab and A Samad. J. Magn. Magn. Mater. 546, 168816 (2022)

    CAS  Google Scholar 

  19. Y. Soni, U. Randi, A. Shukla, T.K. Joshi, A.S. Verma, Transition metal-based halides double Cs2ZSbX6 (Z = Ag, Cu, and X = Cl, Br, I) perovskites: a mechanically stable and highly absorptive materials for photovoltaic devices. J. Solid State Chem. 314, 12342 (2022)

    Google Scholar 

  20. A. Bhorde, R. Waykar, S.R. Rondiya, S. Nair, G. Lonkar, A. Funde, N.Y. Dzade, S. Jadkar, Structural, electronic, and optical properties of lead-free halide double perovskite Rb2AgBiI6: a combined experimental and density functional theory study. ES Mater. Manuf. 12, 43–52 (2021)

    CAS  Google Scholar 

  21. T. Tang, Y. Tang, First principle comparative study of transitional elements Co, Rh, Ir (III)-based double halide perovskites. Mater. Today Commun. 34, 105431 (2023)

    CAS  Google Scholar 

  22. Y. Chrafih, M. Al-Hattab, K. Rahmani, Thermodynamic, optical, and morphological studies of the Cs2AgBiX6 double perovskites (X = Cl, Br, and I): insights from DFT study. J. Alloys Compds. 960, 170650 (2023)

    CAS  Google Scholar 

  23. G. Nazir, Q. Mahmood, M. Hassan, M.M. Al-Anazy, N.A. Kattan, N. Sfina, M.A. Amin, A. Mera, H.H. Somaily, Tuning of band gap by anions (Cl, Br, I) of double perovskites Rb2AgAsX6 (Cl, Br, I) for solar cells and thermoelectric applications. Phys. Scr. 98, 025811 (2023)

    Google Scholar 

  24. M.Z. Kazim, M. Yaseen, A. Ghaffar, I.A. Bhatti, Physical properties of Ba2XIO6 (X = Ag, Na) double perovskite oxides for energy harvesting devices. Arab. J. Sci. Eng. 48, 779–787 (2023)

    CAS  Google Scholar 

  25. E. Landini, K. Reuter, H. Oberhofer, Machine-learning based screening of lead-free halide double perovskites for photovoltaic applications (2022), arXiv:2208.12736v1

  26. S. Mukaddar, S. Ghosh, 16.35 % efficient Cs2GeSnCl6 based heterojunction solar cell with hole-blocking SnO2 layer: DFT and SCAPS-1D simulation. Optik 267, 169608 (2022)

    Google Scholar 

  27. D. Behera, S.K. Mukherjee, First-principles calculations to investigate structural, optoelectronics and thermoelectric properties of lead free Cs2GeSnX6 (X = Cl, Br). Mater. Sci. Eng. B 292, 116421 (2023)

    CAS  Google Scholar 

  28. P. Bhala, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, D.L. Marks, WIEN2K: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020)

    Google Scholar 

  29. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Google Scholar 

  30. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    PubMed  CAS  Google Scholar 

  31. M.A. Ali, R. Ullah, S. Murad, S.A. Dar, A. Khan, G. Murtaza, A. Laref, Insight into pressure tunable structural, electronic and optical properties of CsYbF3 via DFT calculations. Eur. Phys. J. Plus 135, 309 (2020)

    Google Scholar 

  32. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a Semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    PubMed  Google Scholar 

  33. N. Erum, M.A. Iqbal, Ab initio study of high dielectric constant oxide-perovskites: perspective for miniaturization technology. Mater. Res. Express 4, 025904 (2017)

    Google Scholar 

  34. M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001)

    Google Scholar 

  35. I. Khan, I. Ahmad, B. Amin, G. Murtaza, Z. Ali, Bandgap engineering of Cd1-x SrxO. Physica B 406, 2509–2514 (2011)

    CAS  Google Scholar 

  36. G.K.H. Madsen, D.J. Singh, BoltzTraP A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    CAS  Google Scholar 

  37. A.H. Reshak, Thermoelectric properties of highly-mismatched alloys of GaNxAs1-x from first-to second principles methods: energy conversion. RSC Adv. 6, 72286–72294 (2016)

    CAS  Google Scholar 

  38. W. Chen, J.-H. Pohls, G. Hautier, D. Broberg, D. Bajaj, U. Aydemir, Z.M. Gibbs, H. Zhu, M. Asta, G.J. Snyder, B. Meredig, M.A. White, K. Persson, A. Jain, Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with elements. J. Mater. Chem. C 4, 4414–4426 (2016)

    CAS  Google Scholar 

  39. B.U. Haq, S. AlFaify, R. Ahmad, S. Al-Qaisi, M.M. Alsardia, I.B. Khadka, S.-H. Kim, Thermoelectric properties of different polymorphs of gallium phosphide, a first-principles study. Ceram. Int. 48, 642–647 (2022)

    Google Scholar 

  40. C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019)

    PubMed  PubMed Central  CAS  Google Scholar 

  41. M.G. Brik, I.V. Kityk, Modeling of lattice constant and their relations with ionic radii and electronegativity of constituting ions of A2XY6 cubic crystals (A = K, Cs, Rb, Tl; X = tetravalent cation, Y = F, Cl. Br, I). J. Phys. Chem. Solids 72, 1256–1260 (2011)

    CAS  Google Scholar 

  42. S.S. Essaoud, A. Bouhemadou, M.E. Ketfi, D. Allali, S. Bin-Omran, Structural parameters, electronic structure and linear optical functions of LuXCo2Sb2 (X = V, Nb and Ta) double half Heusler alloys. Physica B 657, 414809 (2023)

    Google Scholar 

  43. R.I. Maphoto, M.T. Morukuladi, K.T. Malatji, M.C. Masedi, P.E. Ngoepe, First-Principle study of CsPbBr3 and CsPbI3 perovskites solar cells. ECS J. Solid State Sci. Technol. 11, 035012 (2022)

    Google Scholar 

  44. M.A. Blanco, E. Francisco, V. Luania, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004)

    CAS  Google Scholar 

  45. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Zeitschriftfürkristallographie 220, 567–570 (2005)

  46. S.A. Khandy, S.G. Vaid, I. Islam, A.K. Hafiz, J.D. Chai, Understanding the stability concerns and electronic structure of CsYbX3 (X = Cl, Br) halidoperovskites for optoelectronic applications. J. Alloys Compds. 867, 158966 (2021)

    CAS  Google Scholar 

  47. J. Singh, T. Kaur, A.P. Singh, M. Goyal, K. Kaur, S.A. Khandy, I. Islam, A.F. Wani, R. Krishan, M.M. Sinha, S.S. Verma, LiNbCoX (X = Al, Ga) quaternary Heusler compounds for high-temperature thermoelectric properties: a computational approach. Bull. Mater. Sci. 46, 103 (2023)

    CAS  Google Scholar 

  48. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244–247 (1944)

    PubMed  PubMed Central  CAS  Google Scholar 

  49. S. Kiran, U. Mumtaz, A. Mustafa, M. Imran, F. Hussain, U. Rasheed, R.M.A. Khalil, E.A. Khera, A. Nazir, An ab investigation of the structural, mechanical, electronic, optical, and thermoelectric properties of novel double perovskite halides Cs2CaSnX6 (X= Cl, Br, I) for optical influenced RRAM devices. RSC Adv. 13, 11192 (2023)

    PubMed  PubMed Central  CAS  Google Scholar 

  50. M.W. Iqbal, M. Manzoor, S. Gouadria, M. Asghar, M. Zainab, N.N. Ahmad, S. Aftab, R. Sharma, T. Zahid, DFT insights on the opto-electronic and thermoelectric properties of double perovskites K2AgSbX6 (X= Cl, Br) via halide substitutes for solar cell applications. Mater. Sci. Eng. B 290, 116338 (2023)

    CAS  Google Scholar 

  51. Y. Cai, M. Faizan, X. Shen, A.M. Mebed, T.A. Alrebdi, X. He, NaBeAs and NaBeSb: novel ternary pnictides with enhanced thermoelectric performance. J. Phys. Chem. C 127, 1733–1743 (2023)

    CAS  Google Scholar 

  52. I.-H. Lee, J. Lee, Y.J. Oh, S. Kim, K.J. Chang, Computational search for direct band gap silicon crystals. Phys. Rev. B 90, 115209 (2014)

    Google Scholar 

  53. M.R. Filip, S. Hillman, A.A. Haghighirad, H.J. Snaith, F. Giustino, Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. J. Phys. Chem. Lett. 7, 2579–2585 (2016)

    PubMed  CAS  Google Scholar 

  54. M.A. Ali, R.A. Alshgari, A.A.A. Bahajjaj, M. Sillapaa, The study of new double perovskites K2AgAsX6 (X = Cl, Br) for energy-based applications. J. Taibah Univ. Sci. 17, 2170680 (2023)

    Google Scholar 

  55. D. Demchenko et al., Optical properties of the organic-inorganic hybrid perovskite CH3NH3PbI3: theory and experiment. Phys. Rev. B 94, 075206 (2016)

    Google Scholar 

  56. U. Duman, M. Aycibin, O.F. Ozdemir, The electronic, structural, and optical properties of CaNb2O6 compound: theoretical study. Phys. Status Solidi B 258, 2100416 (2021)

    CAS  Google Scholar 

  57. P. Verma, C. Singh, P.K. Kamlesh, K. Kaur, A.S. Verma, Nowotny-Juza phase KBeX (X = N, P, As, Sb, and Bi) half-Heusler compounds: applicability in photovoltaics and thermoelectric generators. J. Mol. Model. 29, 23 (2023)

    CAS  Google Scholar 

  58. Umm-e-Hani, G. Murtaza, A.A. AlObaid, T.I. Al-Muhimeed, S. Al-Qaisi, A. Rehman, H.H. Hegazy, G. Nazir, M. Morsi, Q. Mahmmod, Tailoring of band gap to tune the optical and thermoelectric properties of Sr1-xBaxSnO3 stannates for clean energy, probed by DFT. Chem. Phys. 551, 111322 (2021)

    CAS  Google Scholar 

  59. I. Ghazal, H. Absike, A. Rachadi, H. Ez-Zahraouy, Investigation of electronic, structural, optical and thermoelectric properties of ternary chalcopyrite ACuS2 (A = Al, Ga and In): Ab initio study. Optik 260, 169077 (2022)

    CAS  Google Scholar 

  60. A. Aziz, I. Arshad, S.A. Aldaghfag, M. Yaseen, J. Iqbal, M. Ishfaq, M.K. Butt, S. Noreen, H.H. Hegazy, Physical properties of Sr2MWO6 (M = Ca, Mg) for renewable energy applications. Phys. Status Solidi B 259, 2200074 (2022)

    CAS  Google Scholar 

  61. G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973)

    CAS  Google Scholar 

  62. S.S. Essaoud, A. Bouhemadou, S. Maabed, S. Bin-Omran, R. Khenata, Pressure dependence of the electronic, optical, thermoelectric, thermodynamic properties of CsVO3: first-principles study. Philos. Mag. 102, 1522–1546 (2022)

    Google Scholar 

  63. M.A. Ali, S.A. Dar, A.A. AlObaid, T.I. Al-Muhimeed, H.H. Hegazy, G. Nazir, G. Murtaza, Appealing perspectives of structural, electronic, mechanical, and thermoelectric properties of Tl2(Se, Te)Cl6 vacancy-ordered double perovskites. J. Phys. Chem. Solids 159, 110258 (2021)

    CAS  Google Scholar 

  64. T. Liu, X. Zhao, J. Li, Z. Liu, F. Liscio, S. Milita, B.C. Schroeder, O. Fenwick, Enhanced control of self-doping in halide perovskites for improved thermoelectric performance. Nat. Commun. 10, 5750 (2019)

    PubMed  PubMed Central  CAS  Google Scholar 

  65. X. Mettan, R. Pisoni, P. Matus, A. Pisoni, J. Jacimovic, B. Nafradi, M. Spina, D. Pavuna, L. Forro, E. Horvath, Tuning of the thermoelectric figure of merit of CH3NH3MI3 (M = Pb, Sn) photovoltaic perovskites. J. Phys. Chem. C 119, 11506–11510 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Supporting Project Number (RSP2023R243) King Saud University, Riyadh, Saudi Arabia.

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Contributions

MAA: Investigation; visualization; calculations; writing original draft; Methodology; conceptualization; review and editing AAA: Methodology; Investigation; review and editing; Resources MM: Methodology; Investigation; review and editing; Resources AK: review and editing; Supervision MF: Visualization; Software; review and editing.

Corresponding author

Correspondence to Malak Azmat Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.A., Alothman, A.A., Mushab, M. et al. DFT Insight into Structural, Electronic, Optical and Thermoelectric Properties of Eco-Friendly Double Perovskites Rb2GeSnX6 (X = Cl, Br) for Green Energy Generation. J Inorg Organomet Polym 33, 3402–3412 (2023). https://doi.org/10.1007/s10904-023-02777-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02777-8

Keywords

Navigation