Skip to main content

Advertisement

Log in

Construction of Rod-Shaped Manganese Trioxide/Phosphorus Doped Carbon Nitride Heterojunction for Z-Scheme Photodegrading Organic Pollutants

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Photocatalysis is regarded as a promising environmental remediation technologies, and manganese oxide is expected to be one of the most efficient photocatalysts. Herein, a rod-shaped manganese trioxide/phosphorus doped carbon nitride Z-scheme heterojunction photocatalyst (Mn2O3/PCN) was prepared. Using rod-shaped phosphorus doped carbon nitride (PCN) as substrate, Mn2O3 particles grew on the surface. This not only inhibited the accumulation of Mn2O3 but also prevented the surface layer shedding of PCN. According to the experimental results, the energy band gap of PCN and Mn2O3 are 2.923 eV and 1.883 eV, respectively. The photocatalytic performance of Mn2O3/PCN enhanced significantly by constructing heterojunction. The optimum sample 0.50%Mn2O3/PCN was obtained by using the optimum ratio of precursors. The removal rates of Rhodamine B, Tetracycline Hydrochloride, Bisphenol A and Sulfamethoxazole with 0.50%Mn2O3/PCN were 99%, 99%, 59% and 71%, and the removal rates of total organic carbon were 72%, 66%, 39% and 49%, respectively. It was proved that ·O2 and ·OH were the main active species for Mn2O3/PCN to degrade pollutants via free radical trapping experiment and electron spin resonance. The migration direction of photogenerated electrons and heterojunction type were deduced by calculating work function (Φ) of Mn2O3(Φ = 7.91 eV) and PCN(Φ = 4.38 eV), and photocatalytic mechanism was proposed. This study has research significance for the application of manganese oxide based heterojunction photocatalyst in the field of environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Du, X. Xu, Q. Liu, L. Bai, K. Hang, D. Wang, Identification of organic pollutants with potential ecological and health risks in aquatic environments: progress and challenges. Sci. Total Environ. 806, 150691 (2022). https://doi.org/10.1016/j.scitotenv.2021.150691

    Article  CAS  PubMed  Google Scholar 

  2. Z. Chen, S. Zhang, Y. Liu, N.S. Alharbi, S.O. Rabah, S. Wang, X. Wang, Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Sci. Total Environ. 731, 139054 (2020). https://doi.org/10.1016/j.scitotenv.2020.139054

    Article  CAS  PubMed  Google Scholar 

  3. Q. Cao, B. Kumru, M. Antonietti, B.V.K.J. Schmidt, Graphitic carbon nitride and polymers: a mutual combination for advanced properties. Mater. Horizons 7, 762–786 (2020). https://doi.org/10.1039/c9mh01497g

    Article  CAS  Google Scholar 

  4. M. Hasanpour, M. Hatami, Photocatalytic performance of aerogels for organic dyes removal from wastewaters: review study. J. Mol. Liq. 309, 113094 (2020). https://doi.org/10.1016/j.molliq.2020.113094

    Article  CAS  Google Scholar 

  5. X.Y. Kong, X.M. Liu, Y.F. Zheng, P.K. Chu, Y. Zhang, S.L. Wu, Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Mater. Sci. Eng.: Rep. 145, 100610 (2021). https://doi.org/10.1016/j.mser.2021.100610

    Article  Google Scholar 

  6. N. Zhang, G. Li, T. Xie, L. Li, Amorphous tantalum oxyhydroxide homojunction: in situ construction for enhanced hydrogen production. J. Colloid Interface Sci. 525, 196–205 (2018). https://doi.org/10.1016/j.jcis.2018.04.066

    Article  CAS  PubMed  Google Scholar 

  7. Y.J. Liu, H.X. Liu, H.M. Zhou, T.D. Li, L.N. Zhang, A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation. Appl. Surf. Sci. 466, 133–140 (2019). https://doi.org/10.1016/j.apsusc.2018.10.027

    Article  CAS  Google Scholar 

  8. Y.L. Lan, Z.S. Li, D.H. Li, W.Y. Xie, G.X. Yan, S.H. Guo, Visible-light responsive Z-scheme Bi@β-Bi2O3/g-C3N4 heterojunction for efficient photocatalytic degradation of 2,3-dihydroxynaphthalene. Chem. Eng. J. 392, 123686 (2020). https://doi.org/10.1016/j.cej.2019.123686

    Article  CAS  Google Scholar 

  9. J. Liu, H. Wang, M. Antonietti, Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 45, 2308–2326 (2016). https://doi.org/10.1039/c5cs00767d

    Article  CAS  PubMed  Google Scholar 

  10. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  PubMed  Google Scholar 

  11. G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B 198, 347–377 (2016). https://doi.org/10.1016/j.apcatb.2016.05.052

    Article  CAS  Google Scholar 

  12. D.L. Huang, Z.H. Li, G.M. Zeng, C.Y. Zhou, W.J. Xue, X.M. Gong, X.L. Yan, S. Chen, W.J. Wang, M. Cheng, Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance. Appl. Catal. B 240, 153–173 (2019). https://doi.org/10.1016/j.apcatb.2018.08.071

    Article  CAS  Google Scholar 

  13. J.J. Yi, W. El-Alami, Y.H. Song, H.M. Li, P.M. Ajayan, H. Xu, Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chem. Eng. J. 382, 122812 (2020). https://doi.org/10.1016/j.cej.2019.122812

    Article  CAS  Google Scholar 

  14. Z.Y. Teng, W.N. Cai, W.N. Sim, Q.T. Zhang, C.Y. Wang, C.L. Su, T. Ohno, Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation. Appl. Catal. B (2021). https://doi.org/10.1016/j.apcatb.2020.119589

    Article  Google Scholar 

  15. J.N. Liang, X.H. Yang, Y. Wang, P. He, H.T. Fu, Y. Zhao, Q.C. Zou, X.Z. An, A review on g-C3N4 incorporated with organics for enhanced photocatalytic water splitting. J. Mater. Chem. A 9, 12898–12922 (2021). https://doi.org/10.1039/d1ta00890k

    Article  CAS  Google Scholar 

  16. Z.Y. Teng, Q.T. Zhang, H.B. Yang, K. Kato, W.J. Yang, Y.R. Lu, S.X. Liu, C.Y. Wang, A. Yamakata, C.L. Su, B. Liu, T. Ohno, Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021). https://doi.org/10.1038/s41929-021-00605-1

    Article  CAS  Google Scholar 

  17. Q.H. Liang, B.B. Shao, S.H. Tong, Z.F. Liu, L. Tang, Y. Liu, M. Cheng, Q.Y. He, T. Wu, Y. Pan, J. Huang, Z. Peng, Recent advances of melamine self-assembled graphitic carbon nitride-based materials: design, synthesis and application in energy and environment. Chem. Eng. J. 405, 126951 (2021). https://doi.org/10.1016/j.cej.2020.126951

    Article  CAS  Google Scholar 

  18. D.B. Wang, S. Li, Q.G. Feng, Supramolecular self-assembled carbon nitride for the degradation of tetracycline hydrochloride. J. Mater. Sci.: Mater. Electron. 29, 9380–9386 (2018). https://doi.org/10.1007/s10854-018-8970-y

    Article  CAS  Google Scholar 

  19. J.J. Huang, Y. Lu, H. Zhang, L. Shang Guan, Z.G. Mou, J.H. Sun, S.P. Sun, J.H. He, W.W. Lei, Template-free synthesis of mesh-like graphic carbon nitride with optimized electronic band structure for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 405, 126685 (2021). https://doi.org/10.1016/j.cej.2020.126685

    Article  CAS  Google Scholar 

  20. R. Li, X.B. Cui, J.T. Bi, X.T. Ji, X. Li, N. Wang, Y.H. Huang, X. Huang, H.X. Hao, Urea-induced supramolecular self-assembly strategy to synthesize wrinkled porous carbon nitride nanosheets for highly-efficient visible-light photocatalytic degradation. RSC Adv. 11, 23459–23470 (2021). https://doi.org/10.1039/d1ra03524j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S.E. Guo, Z.P. Deng, M.X. Li, B.J. Jiang, C.G. Tian, Q.J. Pan, H.G. Fu, Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55, 1830–1834 (2016). https://doi.org/10.1002/anie.201508505

    Article  CAS  Google Scholar 

  22. A. Kumar, P. Raizada, P. Singh, R.V. Saini, A.K. Saini, A. Hosseini-Bandegharaei, Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification. Chem. Eng. J. 391, 123496 (2020). https://doi.org/10.1016/j.cej.2019.123496

    Article  CAS  Google Scholar 

  23. Q.L. Xu, L.Y. Zhang, B. Cheng, J.J. Fan, J.G. Yu, S-scheme heterojunction photocatalyst. Chem 6, 1543–1559 (2020). https://doi.org/10.1016/j.chempr.2020.06.010

    Article  CAS  Google Scholar 

  24. P. Kalisamy, M. Lallimathi, M. Suryamathi, B. Palanivel, M. Venkatachalam, ZnO-embedded S-doped g-C3N4 heterojunction: mediator-free Z-scheme mechanism for enhanced charge separation and photocatalytic degradation. RSC Adv. 10, 28365–28375 (2020). https://doi.org/10.1039/d0ra04642f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Y.X. Wang, L. Rao, P.F. Wang, Z.Y. Shi, L.X. Zhang, Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Appl. Catal. B 262, 118308 (2020). https://doi.org/10.1016/j.apcatb.2019.118308

    Article  CAS  Google Scholar 

  26. D.D. Chen, S.X. Wu, J.Z. Fang, S.Y. Lu, G.Y. Zhou, W.H. Feng, F. Yang, Y. Chen, Z.Q. Fang, A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Sep. Purif. Technol. 193, 232–241 (2018). https://doi.org/10.1016/j.seppur.2017.11.011

    Article  CAS  Google Scholar 

  27. P. Prabhu, V. Jose, J.M. Lee, Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction. Adv. Funct. Mater. 30, 1910768 (2020). https://doi.org/10.1002/adfm.201910768

    Article  CAS  Google Scholar 

  28. Y. Yang, C.Y. Zhou, W.J. Wang, W.P. Xiong, G.M. Zeng, D.L. Huang, C. Zhang, B. Song, W.J. Xue, X.P. Li, Z.W. Wang, D.H. He, H.Z. Luo, Z.L. Ouyang, Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chem. Eng. J. 405, 126547 (2021). https://doi.org/10.1016/j.cej.2020.126547

    Article  CAS  Google Scholar 

  29. J. Zhao, Z. Zhao, N. Li, J. Nan, R. Yu, J. Du, Visible-light-driven photocatalytic degradation of ciprofloxacin by a ternary Mn2O3/Mn3O4/MnO2 valence state heterojunction. Chem. Eng. J. 353, 805–813 (2018). https://doi.org/10.1016/j.cej.2018.07.163

    Article  CAS  Google Scholar 

  30. L.M. Yu, Z. Mo, X.L. Zhu, J.J. Deng, F. Xu, Y.H. Song, Y.B. She, H.M. Li, H. Xu, Construction of 2D/2D Z-scheme MnO2-x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia, Green. Energy Environ. 6, 538–545 (2021). https://doi.org/10.1016/j.gee.2020.05.011

    Article  CAS  Google Scholar 

  31. Y. Zhang, H.B. Li, L. Zhang, R.H. Gao, W.L. Dai, Construction of highly efficient 3D/2D MnO2/g-C3N4 nanocomposite in the epoxidation of styrene with TBHP. ACS Sustain. Chem. Eng. 7, 17008–17019 (2019). https://doi.org/10.1021/acssuschemeng.9b02683

    Article  CAS  Google Scholar 

  32. U. Maitra, B.S. Naidu, A. Govindaraj, C.N. Rao, Importance of trivalency and the eg1 configuration in the photocatalytic oxidation of water by Mn and Co oxides. Proc. Natl. Acad. Sci. USA 110, 11704–11707 (2013). https://doi.org/10.1073/pnas.1310703110

    Article  PubMed  PubMed Central  Google Scholar 

  33. G. Dong, K. Zhao, L. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. 48, 6178–6180 (2012). https://doi.org/10.1039/c2cc32181e

    Article  CAS  Google Scholar 

  34. J.H. Zhao, N. Li, R.X. Yu, Z.W. Zhao, J. Nan, Magnetic field enhanced denitrification in nitrate and ammonia contaminated water under 3D/2D Mn2O3/g-C3N4 photocatalysis. Chem. Eng. J. 349, 530–538 (2018). https://doi.org/10.1016/j.cej.2018.05.124

    Article  CAS  Google Scholar 

  35. D.B. Wang, X. Yu, Q.G. Feng, X.H. Lin, Y. Huang, X.Q. Huang, X. Li, K. Chen, B.H. Zhao, Z. Zhang, In-situ growth of β-Bi2O3 nanosheets on g-C3N4 to construct direct Z-scheme heterojunction with enhanced photocatalytic activities. J. Alloys Compd. 859, 157795 (2021). https://doi.org/10.1016/j.jallcom.2020.157795

    Article  CAS  Google Scholar 

  36. M.A. Qamar, S. Shahid, M. Javed, M. Sher, S. Iqbal, A. Bahadur, D. Li, Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiations. Colloids Surf. A 611, 125863 (2021). https://doi.org/10.1016/j.colsurfa.2020.125863

    Article  CAS  Google Scholar 

  37. H.Y. Niu, W.J. Zhao, H.Z. Lv, Y.L. Yang, Y.Q. Cai, Accurate design of hollow/tubular porous g-C3N4 from melamine-cyanuric acid supramolecular prepared with mechanochemical method. Chem. Eng. J. 411, 128400 (2021). https://doi.org/10.1016/j.cej.2020.128400

    Article  CAS  Google Scholar 

  38. T. Wu, Q. He, Z. Liu, B. Shao, Q. Liang, Y. Pan, J. Huang, Z. Peng, Y. Liu, C. Zhao, X. Yuan, L. Tang, S. Gong, Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C3N4. J. Hazard. Mater. 424, 127177 (2021). https://doi.org/10.1016/j.jhazmat.2021.127177

    Article  CAS  PubMed  Google Scholar 

  39. X.Y. Wang, L.Y. Li, J.Q. Meng, P.Y. Xia, Y.X. Yang, Y.H. Guo, Enhanced simulated sunlight photocatalytic reduction of an aqueous hexavalent chromium over hydroxyl-modified graphitic carbon nitride. Appl. Surf. Sci. 506, 144181 (2020). https://doi.org/10.1016/j.apsusc.2019.144181

    Article  CAS  Google Scholar 

  40. D.B. Wang, X.Q. Huang, Y. Huang, X. Yu, Y. Lei, X.Y. Dong, Z.L. Su, Self-assembly synthesis of petal-like Cl-doped g-C3N4 nanosheets with tunable band structure for enhanced photocatalytic activity. Colloids Surf. A 611, 125780 (2021). https://doi.org/10.1016/j.colsurfa.2020.125780

    Article  CAS  Google Scholar 

  41. R. He, J. Zhou, H. Fu, S. Zhang, C. Jiang, Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 430, 273–282 (2018). https://doi.org/10.1016/j.apsusc.2017.07.191

    Article  CAS  Google Scholar 

  42. C. Ding, S. Kang, W. Li, W. Gao, Z. Zhang, L. Zheng, L. Cui, Mesoporous structure and amorphous Fe-N sites regulation in Fe-g-C3N4 for boosted visible-light-driven photo-Fenton reaction. J. Colloid Interface Sci. 608, 2515–2528 (2022). https://doi.org/10.1016/j.jcis.2021.10.168

    Article  CAS  PubMed  Google Scholar 

  43. L.F. Zhang, Y. Zhang, R. Shi, S.H. Bao, J.W. Wang, A. Amini, B.N. Chandrashekar, C. Cheng, Phosphorous doped graphitic-C3N4 hierarchical architecture for hydrogen production from water under visible light. Mater. Today Energy 5, 91–98 (2017). https://doi.org/10.1016/j.mtener.2017.05.006

    Article  CAS  Google Scholar 

  44. L. Chen, Y. Xie, C. Yu, R. Huang, Q. Du, J. Zhao, W. Sun, W. Wang, Enhanced Fenton-like catalytic activity and stability of g-C3N4 nanosheet-wrapped copper phosphide with strong anti-interference ability: kinetics and mechanistic study. J. Colloid Interface Sci. 595, 129–141 (2021). https://doi.org/10.1016/j.jcis.2021.03.122

    Article  CAS  PubMed  Google Scholar 

  45. C. Wang, C. Yang, J. Qin, S. Rajendran, X. Zhang, A facile template synthesis of phosphorus-doped graphitic carbon nitride hollow structures with high photocatalytic hydrogen production activity. Mater. Chem. Phys. 275, 125299 (2022). https://doi.org/10.1016/j.matchemphys.2021.125299

    Article  CAS  Google Scholar 

  46. S. Li, C. Wang, M. Cai, F. Yang, Y. Liu, J. Chen, P. Zhang, X. Li, X. Chen, Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chem. Eng. J. 428, 131158 (2022). https://doi.org/10.1016/j.cej.2021.131158

    Article  CAS  Google Scholar 

  47. Y. Li, S. Zhu, X. Kong, Y. Liang, Z. Li, S. Wu, C. Chang, S. Luo, Z. Cui, In situ synthesis of a novel Mn3O4/g-C3N4 p-n heterostructure photocatalyst for water splitting. J. Colloid Interface Sci. 586, 778–784 (2021). https://doi.org/10.1016/j.jcis.2020.11.002

    Article  CAS  PubMed  Google Scholar 

  48. Q. Zhang, Y. Peng, F. Deng, M. Wang, D.Z. Chen, Porous Z-scheme MnO2/Mn-modified alkalinized g-C3N4 heterojunction with excellent fenton-like photocatalytic activity for efficient degradation of pharmaceutical pollutants. Sep. Purif. Technol. 246, 116890 (2020). https://doi.org/10.1016/j.seppur.2020.116890

    Article  CAS  Google Scholar 

  49. H.T. Li, Y.D. Liu, Y.L. Liu, L.Z. Wang, R. Tang, P.J. Deng, Z.Q. Xu, B. Haynes, C.H. Sun, J. Huang, Efficient visible light driven ammonia synthesis on sandwich structured C3N4/MoS2/Mn3O4 catalyst. Appl. Catal. B 281, 119476 (2021). https://doi.org/10.1016/j.apcatb.2020.119476

    Article  CAS  Google Scholar 

  50. Y. Li, L. Wang, Y. Xiao, G. Tian, C. Tian, H. Fu, In situ intercalation and exploitation of Co3O4 nanoparticles grown on carbon nitride nanosheets for highly efficient degradation of methylene blue. Dalton Trans. 49, 14665–14672 (2020). https://doi.org/10.1039/d0dt02982c

    Article  CAS  PubMed  Google Scholar 

  51. Y. Chen, X. He, D. Guo, Y. Cai, J. Chen, Y. Zheng, B. Gao, B. Lin, Supramolecular electrostatic self-assembly of mesoporous thin-walled graphitic carbon nitride microtubes for highly efficient visible-light photocatalytic activities. J. Energy. Chem. 49, 214–223 (2020). https://doi.org/10.1016/j.jechem.2020.02.035

    Article  Google Scholar 

  52. J.S. Zhang, J.H. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X.Z. Fu, X.C. Wang, Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ. Sci. 4, 675–678 (2011). https://doi.org/10.1039/c0ee00418a

    Article  CAS  Google Scholar 

  53. J. Shi, X. Zhao, Z. Wang, Y. Liu, Eliminating trap-states and functionalizing vacancies in 2D semiconductors by electrochemistry. Small 15, 1901899 (2019). https://doi.org/10.1002/smll.201901899

    Article  CAS  Google Scholar 

  54. X.Q. Xu, S.M. Wang, T.J. Hu, X.F. Yu, J.P. Wang, C. Jia, Fabrication of Mn/O co-doped g-C3N4: excellent charge separation and transfer for enhancing photocatalytic activity under visible light irradiation. Dyes Pigm. 175, 108107 (2020). https://doi.org/10.1016/j.dyepig.2019.108107

    Article  CAS  Google Scholar 

  55. M. Jourshabani, M.R. Asrami, B.K. Lee, An efficient and unique route for the fabrication of highly condensed oxygen-doped carbon nitride for the photodegradation of synchronous pollutants and H2O2 production under ambient conditions. Appl. Catal. B 302, 120839 (2022). https://doi.org/10.1016/j.apcatb.2021.120839

    Article  CAS  Google Scholar 

  56. G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  57. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  58. J. Li, Z.F. Li, J. Tan, Y. Meng, Y. Lu, T.T. Zhang, First-principles study of S-doped point defects with different charge states in monolayer g-C3N4. Appl. Surf. Sci. 554, 149601 (2021). https://doi.org/10.1016/j.apsusc.2021.149601

    Article  CAS  Google Scholar 

  59. P.F. Xia, B.C. Zhu, B. Cheng, J.G. Yu, J.S. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain. Chem. Eng. 6, 965–973 (2017). https://doi.org/10.1021/acssuschemeng.7b03289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangxi Natural Science Foundation project (NO. 2021GXNSFAA220003).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

XD: Methodology, Data curation, Writing—original draft, Formal analysis. DW: Conceptualization, Supervision, Project administration. YL: Methodology, Writing—review & editing. YY: Supervision, Project administration. JL: Supervision, Project administration.

Corresponding author

Correspondence to Dongbo Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Wang, D., Lei, Y. et al. Construction of Rod-Shaped Manganese Trioxide/Phosphorus Doped Carbon Nitride Heterojunction for Z-Scheme Photodegrading Organic Pollutants. J Inorg Organomet Polym 33, 2890–2905 (2023). https://doi.org/10.1007/s10904-023-02736-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02736-3

Keywords

Navigation