Skip to main content
Log in

Unique Growth and Study on the Unprecedented Effects of Fe Doping Cu2AlSnS4 Material Fabricated by Single Vacuum System

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study utilized the vacuum thermal evaporation method to successfully grow Cu2AlSnS4 (CATS) and Cu2AlxFe1−xSnS4 films on glass substrates, with a focus on the impact of doping on the structural, morphological, optical, and dielectric characteristics of the deposited films. The obtained samples were identified and measured using XRD, SEM, EDX, AFM, and UV–Vis–NIR spectroscopy. X-Ray diffraction analysis confirmed a single phase of CATS with a crystalline nature and average crystallite size of 16.60–42.19 nm. Scanning electron microscope and atomic force microscopy analysis showed a non-spherical agglomeration formation and surface roughness, respectively. According to energy-dispersive X-ray spectroscopy examination, iron (Fe) was detected for doped samples in the CATS structure. Optical testing revealed that the band gap, the refractive index and extinction coefficient significantly changed as more iron was added. These results suggest that Fe doping in the Fe-cationic site of the CATS thin film can be systematically regulated to achieve desirable characteristics as an absorber for solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.K. Sendi, Fabrication of high voltage gradient ZnO nanoparticle-Bi2O3–Mn2O3-based thick film varistors at various sintering temperature. J. King Saud Univ. Sci. 34(3), 101820 (2022)

    Article  Google Scholar 

  2. J.S. Lee, S.K. Oh, W.T. Kim, Optical properties of undoped and co-doped CuAlGeSe4 and CuAlSnSe4 single crystals. J. Appl. Phys. 77(7), 3426–3432 (1995)

    Article  CAS  Google Scholar 

  3. S.K.S. Basha, M.C. Rao, Effect of annealing temperature on structural and morphological studies of electrodeposited CZTS thin films. Ceram. Int. 44, 648 (2018)

    Article  Google Scholar 

  4. K. Mokurala, S. Mallick, P. Bhargava, Alternative quaternary chalcopyrite sulfides (Cu2FeSnS4 and Cu2CoSnS4) as electrocatalyst materials for counter electrodes in dye-sensitized solar cells. J. Power Sour. 305, 134 (2016)

    Article  CAS  Google Scholar 

  5. X. Chen, J. Liu, J. Feng, E. Zhang, H. Wang, X. Liu, J. Liu, H. Rong, M. Xu, J. Zhang, Metal@I2–II–IV–VI4 core–shell nanocrystals: controlled synthesis by aqueous cation exchange for efficient photoelectrochemical hydrogen generation. J. Mater. Chem. A 6(25), 1–12 (2018)

    Google Scholar 

  6. K.V. Gurav, S.W. Shin, U.M. Patil, M.P. Suryawanshi, S.M. Pawar, M.G. Gang, S.A. Vanalakar, J.H. Yun, J.H. Kim, Improvement in the properties of CZTSSe thin films by selenizing single-step electrodeposited CZTS thin films. J. Alloys Compd. 631, 178–182 (2015)

    Article  CAS  Google Scholar 

  7. K. Woo, K. Kim, Z. Zhong, I. Kim, Y. Oh, S. Jeong, J. Moon, Non-toxic ethanol based particulate inks for low temperature processed Cu2ZnSn(S, Se)4 solar cells without S/Se treatment. Sol. Energy Mater. Sol. Cells 128, 362–3368 (2014)

    Article  CAS  Google Scholar 

  8. C. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperseCdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19), 8706–8715 (1993)

    Article  CAS  Google Scholar 

  9. J. Tang, S. Hinds, S.O. Kelley, E.H. Sargent, Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 nanoparticles. Chem. Mater. 20(22), 6906–6910 (2008)

    Article  CAS  Google Scholar 

  10. M. Jeon, T. Shimizu, S. Shingubara, Cu2ZnSnS4 thin films and nanowires prepared by different single-step electrodeposition method in quaternary electrolyte. Mater. Lett. 65(15–16), 2364–2367 (2011)

    Article  CAS  Google Scholar 

  11. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, H. Katagiri, Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films 515(15), 5997–5999 (2007)

    Article  CAS  Google Scholar 

  12. F. Liu, K. Zhang, Y. Lai, J. Li, Z. Zhang, Y. Liu, Growth and characterization of Cu2ZnSnS4 thin films by dc reactive magnetron sputtering for photovoltaic applications. Electrochem. Solid-State Lett. 13(11), 379–381 (2010)

    Article  Google Scholar 

  13. M. Rahman, M. Bashar, N. Islam, Optical and structural study of the CZTS (Cu2ZnSnS4) thin film for solar cell derived from the chloride-based sol–gel precursor solution. Dhaka Univ. J. Sci. 70(1), 1–7 (2022)

    Article  Google Scholar 

  14. A. El Kissani, A. Abali, S. Drissi, L. Nkhaili, K. El Assail, A. Outzourhit, D.-A. El Haj, H. Chaib, Earth abundant Cu2FeSnS4 thin film solar cells, 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), Morocco 1–4 (2021)

  15. A. El Kissani, D. Ait Elhaj, S. Drissi, A. Abali, A. Agdad, H. Aitdads, L. Nkhaili, A. El Mansouri, H. Chaib, K. El Assali, A. Outzourhit, Structural, optical and electrical properties of Cu2CoSnS4 thin film solar cells prepared by facile sol-gel route. Thin Solid Films 758, 139430 (2022)

    Article  Google Scholar 

  16. J. Mani, S. Radha, A.S.A. Nedunchezhian, R. Rajkumar, C.K. Amaljith, M. Arivanandhan, R. Jayavel, G. Anbalagan, A facile synthesis of hierarchical Cu2NiSnS4 nanostructures with low thermal conductivity for thermoelectric applications. J. Solid State Chem. 310, 123088 (2022)

    Article  CAS  Google Scholar 

  17. L. Shi, Y. Li, R. Zheng, Nanoconfned solvothermal synthesis and characterization of ultrafne Cu2NiSnS4 nanotubes. Chem. Plus Chem. 80, 1533–1536 (2015)

    CAS  PubMed  Google Scholar 

  18. F. Ozel, Earth-abundant quaternary semiconductor Cu2MSnS4 (M = fe Co, Ni and Mn) nanofbers: fabrication, characterization and band gap arrangement. J. Alloys Compd. 657, 157–162 (2016)

    Article  CAS  Google Scholar 

  19. A. Ghosh, A. Biswas, R. Thangavel, G. Udayabhanu, Photo-electrochemical property and electronic band structure of kesterite copper chalcogenides Cu2-II-Sn-S4 (II = Fe Co, Ni) thin flms. RSC Adv. 6, 96025–96034 (2016)

    Article  CAS  Google Scholar 

  20. S. Dridi, N. Bitri, M. Abaab, Synthesis of quaternary Cu2NiSnS4 thin flms as a solar energy material prepared through ≪Spray≫ technique. Mater. Lett. 204, 61–64 (2017)

    Article  CAS  Google Scholar 

  21. R. Kumar, A. Kumar, N. Verma, V. Khopkar, B. Sahoo, Ni nanoparticles coated with nitrogen-doped carbon for optical limiting applications. ACS Appl. Nano Mater. 3(9), 8618–8631 (2020)

    Article  CAS  Google Scholar 

  22. S. Sahare, R.K. Choubey, G. Jadhav et al., A comparative investigation of optical and structural properties of Cu-doped CdO-derived nanostructures. J. Supercond. Nov. Magn. 30, 1439–1446 (2017)

    Article  CAS  Google Scholar 

  23. A. Timoumi, W. Zayoud, A. Sharma, M. Kraini, N. Bouguila, A. Hakamy, N. Revaprasadu, S. Alaya, Impact of thermal annealing inducing oxidation process on the crystalline powder of In2S3. J. Mater. Sci.: Mater. Electron. 31(16), 13636–13645 (2020)

    CAS  Google Scholar 

  24. A. Timoumi, H. Bouzouita, Thickness dependent physical properties of evaporated In2S3 films for photovoltaic application. Int. J. Renew. Energy Technol. Res. 2(7), 188–195 (2013)

    Google Scholar 

  25. A. Timoumi, N. Bouguila, J. Koaib, M.K. Al Turkestani, B. Jamoussi, Study of electrical and dielectric properties of palladium-phthalocyanine (PdPc) in pellet form. Mater. Res. Express 6(5), 055103 (2019)

    Article  CAS  Google Scholar 

  26. A. Timoumi, Reduction band gap energy of TiO2 assembled with graphene oxide nanosheets. Graphene 7(04), 31 (2018)

    Article  CAS  Google Scholar 

  27. H. Abassi, N. Bouguila, A. Timoumi, Theoretical study of the AC conduction in β-In2S3. J. Electron. Mater. 47(5), 2519–2525 (2018)

    Article  CAS  Google Scholar 

  28. A. Timoumi, Properties and electrical study of In2S3/SnO2/glass substrates. IJAREEIE 2, 520 (2013)

    Google Scholar 

  29. N. Bouguila, A. Timoumi, H. Bouzouita, Vacuum annealing temperature on spray In2S3 layers. Eur. Phys. J. Appl. Phys. 65(2), 20304 (2014)

    Article  Google Scholar 

  30. J. Koaib, N. Bouguila, H. Abassi, N. Moutia, M. Kraini, A. Timoumi, C. Vázquez-Vázquez, K. Khirouni, S. Alaya, Dielectric and electrical properties of annealed ZnS thin films. The appearance of the OLPT conduction mechanism in chalcogenides. RSC Adv. 10(16), 9549–9562 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. N. Bouguila, A. Timoumi, H. Bouzouita, E. Lacaze, H. Bouchriha, B. Rezig, Molar ratio S/In effect on properties of sprayed In2S3 films. Eur. Phys. J. Appl. Phys. 63(2), 20301 (2013)

    Article  Google Scholar 

  32. C. Nefzi, B. Askri, B. Yahmadi, N.E. Guesmi, J.M. García, N. Kamoun-Turki, S.A. Ahmed, Competence of tunable Cu2AlSnS4 chalcogenides hydrophilicity toward high efficacy photodegradation of spiramycin antibiotic resistance-bacteria from wastewater under visible light irradiation. J. Photochem. Photobiol. A 431, 114041 (2022)

    Article  CAS  Google Scholar 

  33. A. Timoumi, N.E. Guesmi, S.N. Alamri et al., Constructing of novel Cu2AlSnS4 (CATS) compound: synthesis, chracterization and photocatalytic activities approach. J. Inorg. Organomet. Polym. (2023). https://doi.org/10.1007/s10904-023-02582-3

    Article  Google Scholar 

  34. A. Kumar, S. Mukherjee, H. Sharma, D.K. Rana, A. Kumar, R. Kumar, R.K. Choubey, Fabrication of low-cost and fast-response visible photodetector based on ZnS:Mn/p-Si heterojunction. Mater. Sci. Semiconduct. Process 155(1), 107226 (2023)

    Article  CAS  Google Scholar 

  35. A. Kumar, M. Kumar, V. Bhatt, S. Mukherjee, S. Kumar, H. Sharma, M.K. Yadav, S. Tomar, J.-H. Yun, R.K. Choubey, Highly responsive and low-cost ultraviolet sensor based on ZnS/p-Si heterojunction grown by chemical bath deposition. Sens. Actuators A: Phys. 331(1), 112988 (2021)

    Article  CAS  Google Scholar 

  36. A. Kumar et al., Role of deposition parameters on the properties of the fabricated heterojunction ZnS/p-Si Schottky diode. Phys. Scr. 97, 045819 (2022)

    Article  Google Scholar 

  37. A. Wangperawong, J.S. King, S.M. Herron, B.P. Tran, K. Pangan-Okimoto, S.F. Bent, Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films 519, 2488–2492 (2011)

    Article  CAS  Google Scholar 

  38. W. Belhadj, A. Timoumi, F.A. Alamer, O.H. Alsalmi, S.N. Alamri, Experimental study and theoretical modeling of coating-speed-dependent optical properties of TiO2-graphene-oxide thin films. Res. Phys. 30, 104867 (2021)

    Google Scholar 

  39. B. Jamoussi, R. Chakroun, A. Timoumi, K. Essalah, Synthesis and characterization of new imidazole phthalocyanine for photodegradation of micro-organic pollutants from sea water. Catalysts 10(8), 906 (2020)

    Article  CAS  Google Scholar 

  40. G. Balakrishnan, V.R. Bandi, S.M. Rsjeswari, N. Balamuurugan, R.V. Babu, J.I. Song, Effect of oxygen partial pressure on microstructural and optical properties of titanium oxide thin films prepared by pulsed laser deposition. Mater. Res. Bull. 48(11), 4901–4906 (2013)

    Article  CAS  Google Scholar 

  41. Z. Zarhri, A.D. Cano, O. Oubram, Y. Ziat, A. Bassam, Optical measurements and Burstein Moss effect in optical properties of Nb-doped BaSnO3 perovskite. Micro Nanostruct. 166, 207223 (2022)

    Article  CAS  Google Scholar 

  42. S. Ruzgar, S.A. Pehlivanoglu, The effect of Fe dopant on structural, optical properties of TiO2 thin films and electrical performance of TiO2 based photodiode. Superlattice. Microst. 145, 106636 (2020)

    Article  CAS  Google Scholar 

  43. A. Hassan, Z.N. Kayani, M. Anwar, Effect of au ions on structural, optical, magnetic, dielectric, and antibacterial properties of TiO2 dip-coated thin films. J. Mater. Sci.: Mater. Electron. 32, 14398–14419 (2021)

    CAS  Google Scholar 

  44. K.B. Butler, C.C. Chen, Y.T. Hung, M.S. Al Ahmad, Y.P. Fu, Effect of Fe-doped TiO2 photocatalysts on the degradation of acid orange 7. Integr. Ferroelectr. Int. J. 168(1), 1–9 (2016)

    Article  CAS  Google Scholar 

  45. M. Yıldırım, Characterization of the framework of Cu doped TiO2 layers: an insight into optical, electrical and photodiode parameters. J. Alloys Compd. 773, 890–904 (2019)

    Article  Google Scholar 

  46. B. Astinchap, R. Moradian, K. Gholami, Effect of sputtering power on optical properties of prepared TiO2 thin films by thermal oxidation of sputtered Ti layers. Mater. Sci. Semicond. Process 63, 169–175 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4331172DSR01).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally in this work.

Corresponding authors

Correspondence to A. Timoumi or Saleh A. Ahmed.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoumi, A., Alamri, S.N., Alsalmi, O.H. et al. Unique Growth and Study on the Unprecedented Effects of Fe Doping Cu2AlSnS4 Material Fabricated by Single Vacuum System. J Inorg Organomet Polym 33, 3146–3156 (2023). https://doi.org/10.1007/s10904-023-02729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02729-2

Keywords

Navigation