Skip to main content

Advertisement

Log in

The Role of Polyethylene Glycol, a Water Entrainer on Characteristics of Silico Alumino Phosphate Geopolymer to Harvest Enhanced Gel Phase and Stability

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Geopolymers display a typical brittle mechanical behaviour with low ductility and low fracture toughness. These properties might represent a significant limitation for structural applicationsoffers steric entrapping of the organic molecule and thus structuring the solvated cations in the solution so as to enhance the hydrogen bonding between organic polymer and oxides in the inorganic framework. Research efforts have been done on the use of soluble organic polymer in alkali-activated geopolymers in general but studies on their role in phosphate elaborated geopolymers are rare. In view of the above, this research investigates the preparation of the Polyethylene glycol /Metakaolin geopolymer with silico alumino phosphate gel structure under ambient curing conditions and its performance compared with control samples cured at ambient as well at 80 °C temperature. The effect of PEG at different doses 0–3% (MKGP1, MKGP2 and MKGP3) in metakaolin reaction under phosphoric acid of molarity 10 M was studied by measuring compressive strength, flexural strength while tracing and identification of the formed gel network by employing X-ray diffraction, FTIR and Scanning electron microscopic analysis. Strength analysis showed an enhancement with about more than 50% gain in compressive strength in polymer-assisted samples than that of the control samples (MKGP0) which were 12.1 MPa at (ambient ) 18.8 MPa at 80 °C curing. XRD assemblages and FTIR spectral data proved an increased amorphous gel with PEG addition of up to 3% with the refinement of pores. Dense microstructure in blended samples was evident from SEM analysis. The total weight loss by heating the samples in TGA /DTA was found to be lower in PEG samples (29%) and for control mixes as high as 49%. The study results offer valuable organic-geopolymeric composites with better mechanical properties that can be applied for various potential applications as coatings, restoration and conservation domain.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Davidovits, Institut Geopolymer, 3rd printing (Institut Géopolymère, Saint-Quentin, 2008)

    Google Scholar 

  2. L. Provis, J.S. John, J. Van Deventer, Geopolymers: structures, processing, properties and industrial applications (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  3. J. Davidovits, Geopolymer Cem 21, 1–11 (2013)

    Google Scholar 

  4. P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. van Deventer, J. Mater. Sci. 42(9), 2917–2933 (2006). https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  5. N.B. Singh, S.K. Saxena, M. Kumar, S. Rai, Mater. Today Proc. 15, 364–370 (2019). https://doi.org/10.1016/j.matpr.2019.04.095

    Article  CAS  Google Scholar 

  6. Y.S. Wang, Y. Alrefaei, J.G. Dai, Front. Mater. (2019). https://doi.org/10.3389/fmats.2019.00106

    Article  Google Scholar 

  7. A. Palomo, M.T. Blanco Varela, M.L. Granizo, F. Puertas, T. Vázquez, M.W. Grutzeck, Cement Concr. Res. 29, 997–1004 (1999). https://doi.org/10.1016/S0008-8846(99)00074-5

    Article  CAS  Google Scholar 

  8. D.S. Perera, J.V. Hanna, J. Davis, M.G. Blackford, B.A. Latella, Y. Sasaki, E.R. Vance, J. Mater. Sci. 43(19), 6562–6566 (2008). https://doi.org/10.1007/s10853-008-2913-6

    Article  CAS  Google Scholar 

  9. M. Alhawat, A. Ashour, G. Yildirim, A. Aldemir, M. Sahmaran, J. Build. Eng. 50, 104104 (2022). https://doi.org/10.1016/j.jobe.2022.104104

    Article  Google Scholar 

  10. Y.H.M. Amran, R. Alyousef, H. Alabduljabbar, M. El-Zeadani, J. Clean. Prod. (2019). https://doi.org/10.1016/j.jclepro.2019.119679

    Article  Google Scholar 

  11. V. Bednarik, J. Melar, M. Vondruska, R. Slavik, J. Inorg. Organomet. Polym. Mater. 21(1), 9–14 (2010). https://doi.org/10.1007/s10904-010-9424-z

    Article  CAS  Google Scholar 

  12. M. Zribi, S. Baklouti, Polym. Bull. (2021). https://doi.org/10.1007/s00289-021-03829-0

    Article  Google Scholar 

  13. A. Gharzouni, E. Joussein, B. Samet, S. Baklouti, S. Rossignol, J. Non-cryst. Solids 410, 127–134 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.12

    Article  CAS  Google Scholar 

  14. A. Gharzouni, L. Vidal, N. Essaidi, E. Joussein, S. Rossignol, Mater. Design 94, 221–229 (2016). https://doi.org/10.1016/j.matdes.2016.01.043

    Article  CAS  Google Scholar 

  15. L. Liu, X. Cui, Y. He, S. Liu, S. Gong, Mater. Lett. 66(1), 10–12 (2012). https://doi.org/10.1016/j.matlet.2011.08.043

    Article  CAS  Google Scholar 

  16. J. Davidovits, J. Therm. Anal. 35(2), 429–441 (1989). https://doi.org/10.1007/bf01904446

    Article  CAS  Google Scholar 

  17. Y.S. Wang, J.L. Provis, J.G. Dai, Cem. Concr. Compos. 93, 186–195 (2018). https://doi.org/10.1016/j.cemconcomp.2018.07

    Article  CAS  Google Scholar 

  18. Y.S. Wang, J.G. Dai, Z. Ding, W.T. Xu, Mater. Lett. 190, 209–212 (2017). https://doi.org/10.1016/j.matlet.2017.01.022

    Article  CAS  Google Scholar 

  19. M. Mouna Sellami, M. Barre, M. Toumi, J. Inorg. Organomet. Polym. Mater. 30, 3126–3131 (2020)

    Article  Google Scholar 

  20. A.S. Wagh, Advances in Ceramic Matrix Composites X: Proceedings of the 106th Annual Meeting of the American Ceramic Society (Indianapolis, IN). Vol. 107. (2004)

  21. M. Zribi, B. Samet, S. Baklouti, J. Solid State Chem. 281, 121025 (2020). https://doi.org/10.1016/j.jssc.2019.121025

    Article  CAS  Google Scholar 

  22. M. habbouchi, K. Hosni, M. Mezni, C. Zanelli, M. Doggy, M. Dondi, E. Srasra, Appl. Clay Sci. 146, 510–516 (2017). https://doi.org/10.1016/j.clay.2017.07.00

    Article  Google Scholar 

  23. M. Zribi, B. Samet, S. Baklouti, J. Non-Cryst. Solids 511, 62–67 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.01

    Article  CAS  Google Scholar 

  24. L. Gao, Y. Zheng, Y. Tang, J. Yu, X. Yu, B. Liu, Heliyon 6(4), e03853 (2020). https://doi.org/10.1016/j.heliyon.2020.e03853

    Article  PubMed  PubMed Central  Google Scholar 

  25. T. Dong, S. Xie, J. Wang, Z. Chen, Q. Liu, Q J. Aust. Ceram. Soc. (2019). https://doi.org/10.1007/s41779-019-00376-w

    Article  Google Scholar 

  26. H.I. Riyap, F. Kenne Tazune, D. Fotio, H.K. Tchakoute, C.P. NanseuNjiki, C.H. Ruscher, J. Inorg. Organomet. Polym. Mater. 31, 3301–3323 (2021). https://doi.org/10.1007/s10904-021-01949-8

    Article  CAS  Google Scholar 

  27. H.K. Tchakouté, C.H. Rüscher, E. Kamseu, F. Andreola, C. Leonelli, Appl. Clay Sci. 147, 184–194 (2017). https://doi.org/10.1016/j.clay.2017.07.036

    Article  CAS  Google Scholar 

  28. H.I. Riyap, B.K. Ngongang, H.K. Tchakouté et al., Silicon 14, 10535–10558 (2022). https://doi.org/10.1007/s12633-022-01786-5

    Article  CAS  Google Scholar 

  29. R. Gupta, P. Bhardwaj, D. Mishra, M. Prasad, S.S. Amritphale, J. Inorg. Organomet. Polym. Mater. 27(2), 385–398 (2016). https://doi.org/10.1007/s10904-016-0461-0

    Article  CAS  Google Scholar 

  30. O.M. Jensen, P.F. Hansen, Cem. Concr. Res. 32(6), 973–978 (2002). https://doi.org/10.1016/s0008-8846(02)00737-8

    Article  CAS  Google Scholar 

  31. V. Mechtcherine, H.W. Reinhardt, Application of Super Absorbent Polymers (SAP) in Concrete Construction (Springer, Cham, 2012)

    Book  Google Scholar 

  32. O. Mikhailova, P. Rovnaník, Proc. Eng. 151, 222–228 (2016). https://doi.org/10.1016/j.proeng.2016.07.379

    Article  CAS  Google Scholar 

  33. V. Mathivet, J. Jouin, A. Gharzouni, I. Sobrados, H. Celerier, S. Rossignol, M. Parlier, J. Non-cryst. Solids 512, 90–97 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.02.025

    Article  CAS  Google Scholar 

  34. H. Lin, H. Liu, Y. Li, X. Kong, Cem. Concr. Res. 144, 106425 (2021). https://doi.org/10.1016/j.cemconres.2021.106425

    Article  CAS  Google Scholar 

  35. C. Nobouassia Bewa, H.K. Tchakouté, D. Fotio, C.H. Rüscher, E. Kamseu, C. Leonelli, J. Asian. Ceam. Soc. (2018). https://doi.org/10.1080/21870764.2018.1507660

    Article  Google Scholar 

  36. J. Jouin, H. Celerier, L. Ouamara, N. Tessier-Doyen, S. Rossignol, J. Am. Ceram. Soc. 104(10), 5445–5456 (2021). https://doi.org/10.1111/jace.17929

    Article  CAS  Google Scholar 

  37. A. Katsiki, T. Hertel, T. Tysmans, Y. Pontikes, H. Rahier, Materials 12(3), 442 (2019). https://doi.org/10.3390/ma12030442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. X. Zhang, J. Qiao, W. Zhang, F. Cheng, Z. Yin, Z. Huang, X. Min, J. Mater. Sci. 53(18), 13067–13080 (2018). https://doi.org/10.1007/s10853-018-2531-x

    Article  CAS  Google Scholar 

  39. X. Cui, L. Liu, Y. He, J. Chen, J. Zhou, Mater. Chem. Phys. 130(1–2), 1–4 (2011). https://doi.org/10.1016/j.matchemphys.2011.06.039

    Article  CAS  Google Scholar 

  40. H. Celerier, J. Jouin, N. Tessier-Doyen, S. Rossignol, J. Non-cryst. Solids (2018). https://doi.org/10.1016/j.jnoncrysol.2018.09.005

    Article  Google Scholar 

  41. N. Vanitha, R. Jeyalakshmi, Inorg. Chem. Commun. 153, 110758 (2023). https://doi.org/10.1016/j.inoche.2023.110758

    Article  CAS  Google Scholar 

  42. N. Vanitha, T. Revathi, M. Sivasakthi, R. Jeyalakshmi, J. Solid State Chem. 312, 123188 (2022). https://doi.org/10.1016/j.jssc.2022.123188

    Article  CAS  Google Scholar 

  43. H.K. Tchakouté, C.H. Rüscher, S. Kong, E. Kamseu, C. Leonelli, J. Solgel Sci. Technol. 78(3), 492–506 (2016). https://doi.org/10.1007/s10971-016-3983-6

    Article  CAS  Google Scholar 

  44. R.A. Khan, C. Gupta, Int. J. Res. Advent Technol. (IJRAT) 11, 1–7 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the utilization of facilities provided by DST-FIST, Department of Chemistry and SEM facility by NRC, SRM Institute of Science and Technology, Kattankulathur, India. Authors thank the authorities of SRMIST for funding to the research scholars.

Funding

This work was supported by the Department of Science and Technology, the Government of India (GOI), under the grant DST/TDT/WMT/2017 14/03/18, GOI., Kuttuva silicates, Madurai.

Author information

Authors and Affiliations

Authors

Contributions

NV: Investigation, Methodology, Data curation, and original draft preparation. RJ: Conceptualization, Editing and Supervision, Funding acquisition.

Corresponding author

Correspondence to R. Jeyalakshmi.

Ethics declarations

Competing Interests

All the authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanitha, N., Jeyalakshmi, R. The Role of Polyethylene Glycol, a Water Entrainer on Characteristics of Silico Alumino Phosphate Geopolymer to Harvest Enhanced Gel Phase and Stability. J Inorg Organomet Polym 33, 2835–2847 (2023). https://doi.org/10.1007/s10904-023-02715-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02715-8

Keywords

Navigation