Skip to main content

Advertisement

Log in

The Novel Synergistic Effect of ZnO/TiO2 with Carbonaceous rGO Sheets: As an Emerging High Energy Beneficial Electrode Material for an Asymmetric Supercapacitor Application

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this article, the ternary nanocomposite of ZnO/TiO2/rGO (ZTG) was synthesized via hydrothermal technique. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results substantiated the formation of ternary composites. From field emission-scanning electron microscope (FE-SEM) and high resolution-transmission electron microscope (HR-TEM) analysis, it was noticed that rGO sheets were wrapped tightly on the edges of both ZnO and TiO2 nanoparticles, which offers high active sites during the electrochemical performances. Brunauer–Emmett–Teller (BET) technique revealed, ZTG-2 obtained a larger surface area of 148.73 m2 g−1. Based on the electrochemical performances, the active electrode ZTG-2 nanocomposite exhibited a higher specific capacitance of 1278 F g−1 at a current density of 1 A g−1. Further, the sample showed an excellent cyclic retention of 90% even after successive 5000 cycles. Additionally, Asymmetric supercapacitor showed a maximum specific capacitance of 360 F g−1 at 1 A g−1 and revealed an energy density of 115.2 Wh kg−1 at a power density of 0.49 W kg−1 respectively. This article signifies the tactical emergence of ZTG-2 as a promising electrode material for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas, Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett. 3(2), 482–495 (2018)

    Article  CAS  Google Scholar 

  2. S. Balasubramaniam, A. Mohanty, S.K. Balasingam, S.J. Kim, A. Ramadoss, Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nano-Micro Lett. 12, 1–46 (2020)

    Article  Google Scholar 

  3. Q. Zhang, B. Zhao, J. Wang, C. Qu, H. Sun, K. Zhang, M. Liu, High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn-Ni-Al-Co oxide nanosheets. Nano Energy 28, 475–485 (2016)

    Article  Google Scholar 

  4. J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, C.M. Li, Puzzles and confusions in supercapacitor and battery: theory and solutions. J. Power Sources 401, 213–223 (2018)

    Article  CAS  Google Scholar 

  5. K. Subramani, N. Sudhan, M. Karnan, M. Sathish, Orange peel derived activated carbon for fabrication of high-energy and high-rate supercapacitors. ChemistrySelect 2(35), 11384–11392 (2017)

    Article  CAS  Google Scholar 

  6. Z.-S. Wu, D.-W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.-M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20(20), 3595–3602 (2010)

    Article  CAS  Google Scholar 

  7. L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen et al., Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano 6(7), 5941–5951 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. J. Ding, M. Wang, J. Deng, W. Gao, Z. Yang, C. Ran, X. Zhang, A comparison study between ZnO nanorods coated with graphene oxide and reduced graphene oxide. J. Alloys Compd. 582, 29–32 (2014)

    Article  CAS  Google Scholar 

  9. D. Bélanger, T. Brousse, J.W. Long, The electrochemical society interface. Spring 17, 49–53 (2008)

    Google Scholar 

  10. Q. Luo, P. Xu, Y. Qiu, Z. Cheng, X. Chang, H. Fan, Synthesis of ZnO tetrapods for high-performance supercapacitor applications. Mater. Lett. 198, 192–195 (2017)

    Article  CAS  Google Scholar 

  11. N. Mozaffari, V. Vambol, Y. Hamzah, A.E.D. Mahmoud, N. Mozaffari, N.A. Khan, S. Vambol, N. Khan, A. Vinod, Influence of thickness on the structural, morphological and optical properties of Co-doped TiO2 thin films prepared by sol-gel method. Biointerface Res. Appl. Chem. 12, 718–731 (2022)

    CAS  Google Scholar 

  12. M.P. Anandhi, V.J.S. Kumar, S. Harikrishnan, Enhanced capacitive characteristics of TiO2 nanoflakes based electrode material for supercapacitor. J. Electr. Eng. 17(1), 7–7 (2017)

    Google Scholar 

  13. Y. Yang, D. Kim, M. Yang, P. Schmuki, Vertically aligned mixed V2O5–TiO2 nanotube arrays for supercapacitor applications. Chem. Commun. 47(27), 7746–7748 (2011)

    Article  CAS  Google Scholar 

  14. B. Pant, M. Park, S.-J. Park, TiO2 NPs assembled into a carbon nanofiber composite electrode by a one-step electrospinning process for supercapacitor applications. Polymers 11(5), 899 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. W. Chen, C. Xia, H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8(9), 9531–9541 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). https://doi.org/10.1126/science.1158877

    Article  CAS  PubMed  Google Scholar 

  17. G. Rinaldi, Nanoscience and technology: a collection of reviews from nature journals. Assem. Autom. 30(2) (2010).

  18. A. Du, Y.H. Ng, N.J. Bell, Z. Zhu, R. Amal, S.C. Smith, Hybrid graphene/titania nanocomposite: interface charge transfer, hole doping, and sensitization for visible light response. J. Phys. Chem. Lett. 2(8), 894–899 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8(12), 1805–1834 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57, 202–208 (2013)

    Article  CAS  Google Scholar 

  21. R. Kumar, E. Joanni, R.K. Singh, D.P. Singh, S.A. Moshkalev, Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Prog. Energy Combust. Sci. 67, 115–157 (2018)

    Article  Google Scholar 

  22. R.K. Singh, R. Kumar, D.P. Singh, Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 6(69), 64993–65011 (2016)

    Article  CAS  Google Scholar 

  23. Y. Lu, Y. Ma, T. Zhang, Y. Yang, L. Wei, Y. Chen, Monolithic 3D cross-linked polymeric graphene materials and the likes: preparation and their redox catalytic applications. J. Am. Chem. Soc. 140(37), 11538–11550 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. M. Hu, Z. Yao, X. Wang, Graphene-based nanomaterials for catalysis. Ind. Eng. Chem. Res. 56(13), 3477–3502 (2017)

    Article  CAS  Google Scholar 

  25. P. Tang, G. Hu, M. Li, D. Ma, Graphene-based metal-free catalysts for catalytic reactions in the liquid phase. ACS Catal. 6(10), 6948–6958 (2016)

    Article  CAS  Google Scholar 

  26. V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Prog. Energy Combust. Sci. 75, 100786 (2019)

    Article  Google Scholar 

  28. Q. Liu, M. Zhang, L. Huang, Y. Li, J. Chen, C. Li, G. Shi, High-quality graphene ribbons prepared from graphene oxide hydrogels and their application for strain sensors. ACS Nano 9(12), 12320–12326 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. S. Xu, F. Sun, Z. Pan, C. Huang, S. Yang, J. Long, Y. Chen, Reduced graphene oxide-based ordered macroporous films on a curved surface: general fabrication and application in gas sensors. ACS Appl. Mater. Interfaces 8(5), 3428–3437 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. K. Vikrant, V. Kumar, K.-H. Kim, Graphene materials as a superior platform for advanced sensing strategies against gaseous ammonia. J. Mater. Chem. A 6(45), 22391–22410 (2018)

    Article  CAS  Google Scholar 

  31. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, R.M. Yadav, R.K. Verma, D.P. Singh et al., A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: recent progress and perspectives. Nano Res. 12, 2655–2694 (2019)

    Article  CAS  Google Scholar 

  32. D.P. Singh, C.E. Herrera, B. Singh, S. Singh, R.K. Singh, R. Kumar, Graphene oxide: an efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng. C 86, 173–197 (2018)

    Article  CAS  Google Scholar 

  33. B. Qiu, M. Xing, J. Zhang, Recent advances in three-dimensional graphene based materials for catalysis applications. Chem. Soc. Rev. 47(6), 2165–2216 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. X. Li, L. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. R. Kumar, W. Dias, R.J.G. Rubira, A.V. Alaferdov, A.R. Vaz, R.K. Singh, S.R. Teixeira, C.J.L. Constantino, S.A. Moshkalev, Simple and fast approach for synthesis of reduced graphene oxide–MoS2 hybrids for room temperature gas detection. IEEE Trans. Electron Devices 65(9), 3943–3949 (2018)

    Article  CAS  Google Scholar 

  36. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, S.A. Moshkalev, A. Matsuda, K.K. Kar, Heteroatom doping of 2D graphene materials for electromagnetic interference shielding: a review of recent progress. Crit. Rev. Solid State Mater. Sci. 47(4), 570–619 (2022)

    Article  CAS  Google Scholar 

  37. D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15), 5382–5388 (2011)

    Article  CAS  Google Scholar 

  38. A.B. Suriani, M.D. Nurhafizah, A. Mohamed, M.H. Mamat, M.F. Malek, M.K. Ahmad, A. Pandikumar, N.M. Huang, Enhanced photovoltaic performance using reduced graphene oxide assisted by triple-tail surfactant as an efficient and low-cost counter electrode for dye-sensitized solar cells. Optik 139, 291–298 (2017)

    Article  CAS  Google Scholar 

  39. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sc. Rep. 6(1), 36143 (2016)

    Article  CAS  Google Scholar 

  41. H.H. Nguyen, K.T.M. Dang, D.T.H. Phan, Synthesis of Fe3O4/graphene oxide nanocomposite for the treatment of heavy metals in the contaminated wastewater. VNUHCM J. Sci. Technol. Dev. 18(4), 212–220 (2015)

    Article  Google Scholar 

  42. W. Du, H. Geng, Y. Yang, Y. Zhang, X. Rui, C.C. Li, Pristine graphene for advanced electrochemical energy applications. J. Power Sources 437, 226899 (2019)

    Article  CAS  Google Scholar 

  43. A.T. Laval, Graphene-based nano composites and their applications—a review. Biosens. Bioelectron. 141, 111384 (2019)

    Article  Google Scholar 

  44. V. Srinivasan, J.W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors. J. Electrochem. Soc. 144(8), L210 (1997)

    Article  CAS  Google Scholar 

  45. I. Heng, F.W. Low, C.W. Lai, J.C. Juan, N. Amin, S.K. Tiong, High performance supercapattery with rGO/TiO2 nanocomposites anode and activated carbon cathode. J. Alloys Compd. 796, 13–24 (2019)

    Article  CAS  Google Scholar 

  46. J. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng, Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132(21), 7279–7281 (2010)

    Article  CAS  PubMed  Google Scholar 

  47. Y. Wang, P. Zhang, C.F. Liau, L. Zhan, Y.F. Li, C.Z. Huang, Green and easy synthesis of biocompatible graphene for use as an anticoagulant. RSC Adv. 2, 2322–2328 (2012)

    Article  CAS  Google Scholar 

  48. X. Xie, K. Zhao, X. Xu, W. Zhao, S. Liu, Z. Zhu, M. Li, Z. Shi, Y. Shao, Study of heterogeneous electron transfer on the graphene/self-assembled monolayer modified gold electrode by electrochemical approaches. J. Phys. Chem. C 114(33), 14243–14250 (2010)

    Article  CAS  Google Scholar 

  49. S. Zhang, Y. Shao, H. Liao, M.H. Engelhard, G. Yin, Y. Lin, Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets. ACS Nano 5(3), 1785–1791 (2011)

    Article  CAS  PubMed  Google Scholar 

  50. L. Qiu, H. Zhang, W. Wang, Y. Chen, R. Wang, Effects of hydrazine hydrate treatment on the performance of reduced graphene oxide film as counter electrode in dye-sensitized solar cells. Appl. Surf. Sci. 319, 339–343 (2014)

    Article  CAS  Google Scholar 

  51. D.M.G.T. Nathan, S.J.M. Boby, Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors. J. Alloys Compd. 700, 67–74 (2017)

    Article  CAS  Google Scholar 

  52. F.T. Johra, W.-G. Jung, RGO–TiO2–ZnO composites: synthesis, characterization, and application to photocatalysis. Appl. Catal. A 491, 52–57 (2015)

    Article  CAS  Google Scholar 

  53. D. Kanakaraju, S. Ravichandar, Y.C. Lim, Combined effects of adsorption and photocatalysis by hybrid TiO2/ZnO-calcium alginate beads for the removal of copper. J. Environ. Sci. 55, 214–223 (2017)

    Article  CAS  Google Scholar 

  54. T.T.T. Pham, N. Mathews, Y.-M. Lam, S. Mhaisalkar, Enhanced efficiency of dye-sensitized solar cells with mesoporous-macroporous TiO2 photoanode obtained using ZnO template. J. Electron. Mater. 46, 3801–3807 (2017)

    Article  CAS  Google Scholar 

  55. S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50(14), 5331–5339 (2012)

    Article  CAS  Google Scholar 

  56. P. Cui, J. Lee, E. Hwang, H. Lee, One-pot reduction of graphene oxide at subzero temperatures. Chem. Commun. 47(45), 12370–12372 (2011)

    Article  CAS  Google Scholar 

  57. F.W. Low, C.W. Lai, S.B. Abd Hamid, Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceram. Int. 41(4), 5798–5806 (2015)

    Article  CAS  Google Scholar 

  58. C.H. Nguyen, R.-S. Juang, Efficient removal of methylene blue dye by a hybrid adsorption–photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse. J. Ind. Eng. Chem. 76, 296–309 (2019)

    Article  CAS  Google Scholar 

  59. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus Jr., Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2(6), 949–956 (2012)

    Article  CAS  Google Scholar 

  60. Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, J. Ma, Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange. Carbon 50(11), 4093–4101 (2012)

    Article  CAS  Google Scholar 

  61. D.A. Agyeman, K. Song, S.H. Kang, M.R. Jo, E. Cho, Y.-M. Kang, An improved catalytic effect of nitrogen-doped TiO2 nanofibers for rechargeable Li–O2 batteries; the role of oxidation states and vacancies on the surface. J. Mater. Chem. A 3(45), 22557–22563 (2015)

    Article  CAS  Google Scholar 

  62. V.I. Nefedov, Y.V. Salyn, G. Leonhardt, R. Scheibe, A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 10(2), 121–124 (1977)

    Article  CAS  Google Scholar 

  63. Y. Haldorai, W. Voit, J.-J. Shim, Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: green synthesis in supercritical fluid. Electrochim. Acta 120, 65–72 (2014)

    Article  CAS  Google Scholar 

  64. A. Longo, R. Verucchi, L. Aversa, R. Tatti, A. Ambrosio, E. Orabona, U. Coscia, G. Carotenuto, P. Maddalena, Graphene oxide prepared by graphene nanoplatelets and reduced by laser treatment. Nanotechnology 28(22), 224002 (2017)

    Article  CAS  PubMed  Google Scholar 

  65. Y. Lv, Y. Ding, J. Zhou, W. Xiao, Y. Feng, Preparation, characterization, and photocatalytic activity of N, S-codoped TiO2 nanoparticles. J. Am. Ceram. Soc. 92(4), 938–941 (2009)

    Article  CAS  Google Scholar 

  66. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717 (2011)

    Article  CAS  Google Scholar 

  67. B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6(1), 32355 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11(7), 3026–3033 (2011)

    Article  CAS  PubMed  Google Scholar 

  69. K. Li, Y. Zhao, C. Song, X. Guo, Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis. Appl. Surf. Sci. 425, 526–534 (2017)

    Article  CAS  Google Scholar 

  70. X. Liu, L.-S. Wang, Y. Ma, Y. Qiu, Q. Xie, Y. Chen, D.-L. Peng, Facile synthesis and microwave absorption properties of yolk-shell ZnO-Ni-C/RGO composite materials. Chem. Eng. J. 333, 92–100 (2018)

    Article  CAS  Google Scholar 

  71. F. Yusoff, N.T. Khing, C.C. Hao, L.P. Sang, N.B. Muhamad, N. Md Saleh, The electrochemical behavior of zinc oxide/reduced graphene oxide composite electrode in dopamine. Malays. J. Anal. Sci. 22(2), 227–237 (2018)

    Google Scholar 

  72. J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei, Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 48(6), 1731–1737 (2010)

    Article  CAS  Google Scholar 

  73. Z. Li, Z. Zhou, G. Yun, K. Shi, X. Lv, B. Yang, High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res. Lett. 8(1), 1–9 (2013)

    Article  Google Scholar 

  74. C.-W. Liew, S. Ramesh, A.K. Arof, Enhanced capacitance of EDLCs (electrical double layer capacitors) based on ionic liquid-added polymer electrolytes. Energy 109, 546–556 (2016)

    Article  CAS  Google Scholar 

  75. E. Mitchell, A. Jimenez, R.K. Gupta, B.K. Gupta, K. Ramasamy, M. Shahabuddin, S.R. Mishra, Ultrathin porous hierarchically textured NiCo2O4-graphene oxide flexible nanosheets for high-performance supercapacitors. New J. Chem. 39(3), 2181–2187 (2015)

    Article  CAS  Google Scholar 

  76. Z. Li, Y. An, Z. Hu, N. An, Y. Zhang, B. Guo, Z. Zhang, Y. Yang, H. Wu, Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. J. Mater. Chem. A 4(27), 10618–10626 (2016)

    Article  CAS  Google Scholar 

  77. P. Nagaraju, A. Alsalme, A. Alswieleh, R. Jayavel, Facile in-situ microwave irradiation synthesis of TiO2/graphene nanocomposite for high-performance supercapacitor applications. J. Electroanal. Chem. 808, 90–100 (2018)

    Article  CAS  Google Scholar 

  78. J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S. Austin Suthanthiraraj, R. Jayavel, D.J.J.O.I. Nedumaran, Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. J. Inorg. Organomet. Polym. Mater. 28, 2046–2055 (2018)

    Article  CAS  Google Scholar 

  79. L. Thirugnanam, R. Sundara, Few layer graphene wrapped mixed phase TiO2 nanofiber as a potential electrode material for high performance supercapacitor applications. Appl. Surf. Sci. 444, 414–422 (2018)

    Article  CAS  Google Scholar 

  80. T.P. Gujarati, A.G. Ashish, M. Rai, M.M. Shaijumon, Highly ordered vertical arrays of TiO2/ZnO hybrid nanowires: synthesis and electrochemical characterization. J. Nanosci. Nanotechnol. 15(8), 5833–5839 (2015)

    Article  CAS  PubMed  Google Scholar 

  81. P. Anandhi, V.J.S. Kumar, S. Harikrishnan, Preparation and improved capacitive behavior of NiO/TiO2 nanocomposites as electrode material for supercapacitor. Curr. Nanosci. 16(1), 79–85 (2020)

    Article  CAS  Google Scholar 

  82. H.-C. Chen, Y.-R. Lyu, A. Fang, G.-J. Lee, L. Karuppasamy, J.J. Wu, C.-K. Lin, S. Anandan, C.-Y. Chen, The design of ZnO nanorod arrays coated with MnOx for high electrochemical stability of a pseudocapacitor electrode. Nanomaterials 10(3), 475 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. S. Britto, V. Ramasamy, P. Murugesan, R. Thangappan, R. Kumar, Preparation and electrochemical validation of rGO–TiO2–MoO3 ternary nanocomposite for efficient supercapacitor electrode. Diam. Relat. Mater. 122, 108798 (2022)

    Article  CAS  Google Scholar 

  84. P. Salarizadeh, M.B. Askari, MoS2–ReS2/rGO: a novel ternary hybrid nanostructure as a pseudocapacitive energy storage material. J. Alloys Compd. 874, 159886 (2021)

    Article  CAS  Google Scholar 

  85. M. Chaudhary, R.A. Doong, N. Kumar, T.Y. Tseng, Ternary Au/ZnO/rGO nanocomposites electrodes for high performance electrochemical storage devices. Appl. Surf. Sci. 420, 118–128 (2017)

    Article  CAS  Google Scholar 

  86. C. Zhong, Y. Deng, W. Hu, D. Sun, X. Han, J. Qiao, J. Zhang, Electrolytes for Electrochemical Supercapacitors (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

Download references

Acknowledgements

We sincerely thank the center “DST-SAIF Cochin”, CUSAT, Cochin—682 022, Kerala, Central laboratory for instrumentation and facilitation (CLIF), University of Kerala, Kariyavattom, Thiruvananthapuram-695581 and material analysis & research centre, Bengaluru for their immense help to carry this work. The authors acknowledge centennial physics Ph.D Instrumentation Center, Department of Physics, Loyola College, Chennai-600 034.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

SH: conceptualization, methodology, software, data curation, writing-original draft preparation. VAFS: visualization, investigation, software and editing, validation. SBB: data curation. MVAR: supervision. JM: analysis and reviewing.

Corresponding author

Correspondence to V. Anto Feradrick Samson.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harini, S., Anto Feradrick Samson, V., Bharathi Bernadsha, S. et al. The Novel Synergistic Effect of ZnO/TiO2 with Carbonaceous rGO Sheets: As an Emerging High Energy Beneficial Electrode Material for an Asymmetric Supercapacitor Application. J Inorg Organomet Polym 33, 4096–4116 (2023). https://doi.org/10.1007/s10904-023-02709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02709-6

Keywords

Navigation