Skip to main content
Log in

Fabrication of Fe3O4@APF Magnetic Nanospheres with Tunable Core–Shell Structure: An Effective Carrier and Reducing Agent for Ag Nanoparticles

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In recent decades, magnetic nanomaterials with fast separation and recyclable performance have raised great interest for broad applications in catalysis, protein separation and immunodiagnostics. In this paper, Fe3O4 nanoparticles with a size of (350 ± 50) nm were produced by the solvothermal method. Then, the nanoparticles were coated with a shell made of 3-aminophenol-formaldehyde (APF) resin to prevent agglomeration. The reaction was very rapid, and core–shell Fe3O4@APF nanospheres were produced by polycondensation within 10 min. Besides, the thickness of the APF shell could be easily adjusted in the range of 10–200 nm by controlling the reaction time and the concentration of 3-aminophenol and formaldehyde. In particular, the APF layer could also act as an effective carrier and reducing agent to capture hundreds of well-dispersed Ag nanoparticles for the abundant hydroxyl groups, obtaining sesame-ball-like Fe3O4@APF@Ag nanocomposites. The structure of sesame-ball can prevent silver nanoparticles from agglomerating, and Fe3O4 core could provide strong magnetism. The magnetic Fe3O4@APF@Ag nanomaterials could catalyze the reduction of organic dyes (4-NP, MB and RhB), and the catalyst possessed high activity, with the conversion of dyes remaining above 90% within 3 min after 7 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Liu, Z. Sun, Y. Deng, Y. Zou, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, D. Zhao, Angew Chem Int Ed Engl 48, 5875–5879 (2009). https://doi.org/10.1002/anie.200901566

    Article  CAS  PubMed  Google Scholar 

  2. Z. Xiao, L. Zhang, V.L. Colvin, Q. Zhang, G. Bao, Ind. Eng. Chem. Res. 61, 7613–7625 (2022). https://doi.org/10.1021/acs.iecr.1c04879

    Article  CAS  Google Scholar 

  3. Lu. An-Hui, E, International. (L, Salabas, Ferdi and Schüth, Angewandte Chemie, 2006)

    Google Scholar 

  4. K.J. Jenkinson, A. Wagner, N. Kornienko, E. Reisner, A.E.H. Wheatley, Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202002633

    Article  Google Scholar 

  5. L. Ouyang, B. Qiu, Bioresour. Technol. (2023). https://doi.org/10.1016/j.biortech.2022.128296

    Article  PubMed  Google Scholar 

  6. J.J. Wan, L.J. Zhang, B. Yang, B. Jia, J. Yang, X. Su, Chem. Eng. J; (2022). https://doi.org/10.1016/j.cej.2021.131976

    Article  PubMed  PubMed Central  Google Scholar 

  7. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chem. 117, 2842–2845 (2005). https://doi.org/10.1002/ange.200462551

    Article  Google Scholar 

  8. A.H. Lu, E.L. Salabas, F. Schuth, Angew. Chem. Int. Ed Engl. 46, 1222–1244 (2007). https://doi.org/10.1002/anie.200602866

    Article  CAS  PubMed  Google Scholar 

  9. S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong, Adv Colloid Interface Sci 281, 102165 (2020). https://doi.org/10.1016/j.cis.2020.102165

    Article  CAS  PubMed  Google Scholar 

  10. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Prog. Polym. Sci. 38, 1232–1261 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.003

    Article  CAS  Google Scholar 

  11. S. Aberdeen, C.A. Hur, E. Cali, L. Vandeperre, M.P. Ryan, J Colloid Interface Sci 608, 1728–1738 (2022). https://doi.org/10.1016/j.jcis.2021.10.030

    Article  CAS  PubMed  Google Scholar 

  12. S. Shanmugam, S. Krishnaswamy, R. Chandrababu, U. Veerabagu, A. Pugazhendhi, T. Mathimani, Fuel (2020). https://doi.org/10.1016/j.fuel.2020.117777

    Article  Google Scholar 

  13. Y. Wang, Y. Wei, P. Gao, S. Sun, Q. Du, Z. Wang, Y. Jiang, ACS Appl. Mater. Interfaces 13, 11166–11176 (2021). https://doi.org/10.1021/acsami.0c19734

    Article  CAS  PubMed  Google Scholar 

  14. Q. Yang, H. Wang, F. Li, Z. Dang, L. Zhang, J. Mater. Chem. A 9, 13306–13319 (2021). https://doi.org/10.1039/d1ta02475b

    Article  CAS  Google Scholar 

  15. W.S. Zhao, D.X. Zhang, T.X. Zhou, J. Huang, Y. Wang, B. Li, L. Chen, J. Yang, Y. Liu, Sens. Actuat. B: Chem. (2022). https://doi.org/10.1016/j.snb.2021.130879

    Article  Google Scholar 

  16. X.W. Xu, X.M. Zhang, C. Liu, Y.L. Yang, J.W. Liu, H.P. Cong, C.H. Dong, X.F. Ren, S.H. Yu, J. Am. Chem. Soc. 135, 12928–12931 (2013). https://doi.org/10.1021/ja404880b

    Article  CAS  PubMed  Google Scholar 

  17. L. Pilato, React. Funct. Polym. 73, 270–277 (2013). https://doi.org/10.1016/j.reactfunctpolym.2012.07.008

    Article  CAS  Google Scholar 

  18. J. Liu, S.Z. Qiao, H. Liu, J. Chen, A. Orpe, D. Zhao, G.Q. Lu, Angew Chem. Int. Ed Engl. 50, 5947–5951 (2011). https://doi.org/10.1002/anie.201102011

    Article  CAS  PubMed  Google Scholar 

  19. Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, H. Zeng, ACS Appl. Mater. Interfaces 6, 8845–8852 (2014). https://doi.org/10.1021/am501632f

    Article  CAS  PubMed  Google Scholar 

  20. Y.N. Zhang, Y. Yang, H.C. Duan, C. Lu, ACS Appl. Mater. Interfaces 10, 44535–44545 (2018). https://doi.org/10.1021/acsami.8b19489

    Article  CAS  PubMed  Google Scholar 

  21. Y. Pi, Y. Ma, X. Wang, C.A.H. Price, H. Li, Q. Liu, L. Wang, H. Chen, G. Hou, B.L. Su, J. Liu, Adv. Mater. (2022). https://doi.org/10.1002/adma.202205153

    Article  PubMed  Google Scholar 

  22. C. Gong, Q. Li, H. Zhou, R. Liu, Colloids Surf., A 540, 67–72 (2018). https://doi.org/10.1016/j.colsurfa.2017.12.045

    Article  CAS  Google Scholar 

  23. J.M. Zhao, R. Luque, W.J. Qi, J. Lai, W. Gao, M.R. HasanShahGilani, G. Xu, J. Mater. Chem. A 3, 519–524 (2015). https://doi.org/10.1039/c4ta03821e

    Article  CAS  Google Scholar 

  24. Y. Liu, H. Zhou, J. Wang, S. Li, Z. Li, J. Zhang, Vacuum (2022). https://doi.org/10.1016/j.vacuum.2022.111204

    Article  Google Scholar 

  25. H. Veisi, M. Pirhayati, A. Kakanejadifard, P. Mohammadi, M.R. Abdi, J. Gholami, S. Hemmati, ChemistrySelect 3, 1820–1826 (2018). https://doi.org/10.1002/slct.201702869

    Article  CAS  Google Scholar 

  26. Q. Xu, P. Gao, Y. Wang, W. Jiang, Z. Wang, Y. Jiang, Z. Jiao, J. Supercrit. Fluids (2022). https://doi.org/10.1016/j.supflu.2022.105561

    Article  Google Scholar 

  27. Y. Wang, P.C. Gao, Y.Y. Wei, Y. Jin, S. Sun, Z. Wang, Y. Jiang, J. Environ. Manage 278, 111473 (2021). https://doi.org/10.1016/j.jenvman.2020.111473

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Fundamental Research Funds for The Central Universities with grant number 2242016K41020.

Author information

Authors and Affiliations

Authors

Contributions

WJ: conception, investigation, data collection, and draft writing. QX: verification and formal analysis. FB: verification and formal analysis. YW: investigation. YW: supervision, conception, writing review and editing. ZW: supervision, conception, writing review and editing. YJ: supervision, conception, writing review, and funding acquisition.

Corresponding author

Correspondence to Yong Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13749 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Xu, Q., Bu, F. et al. Fabrication of Fe3O4@APF Magnetic Nanospheres with Tunable Core–Shell Structure: An Effective Carrier and Reducing Agent for Ag Nanoparticles. J Inorg Organomet Polym 33, 2562–2573 (2023). https://doi.org/10.1007/s10904-023-02704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02704-x

Keywords

Navigation