Skip to main content

Advertisement

Log in

Prospects of Biopolymers Based Nanocomposites for the Slow and Controlled Release of Agrochemicals Formulations

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Slow release agrochemicals are a class of agrochemical inputs that deliver their active chemicals or ingredients slowly over time. The majority of formulation consists of an outer medium and a core ingredient, the outer layer progressively degrades over time, enabling the slow release of the active substances to the earth. Bionanocomposites have obtained prominence as outer medium of slow release formulation. Bionanocomposites are a family of hybrid materials made by combining the biopolymer matrix and the nanofiller. Although traditional agrochemicals such as herbicides, insecticides, liming, pesticides, fertilizers etc. are frequently employed in field to improve crop productivity, their excessive use can have noxious effect on the environment and living organisms. These problems can be mitigated by the application of agrochemicals employing bionanocomposites, which increase bio-efficacy and reduces the danger of leaching. This comprehensive review highlights the significance of biobased nanocomposites, their synthesis techniques, applications in agriculture industry and their slow release efficiency in water and soil. It also focus on the remarkable contributions of various research in the slow and controlled release of nanofertilizers, nanopesticides and nanoherbicides which marks a sustainable way of developing agricultural practices aiming at the enhancement of yield.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. H. M. M. Abdel-Aziz, M. N. A. Hasaneen, A. M. Omer, Impact of engineered nanomaterials either alone or loaded with NPK on growth and productivity of French bean plants: Seed priming vs foliar applications. J.SAJB. 125,102–108 (2019). https://doi.org/10.1016/j.sajb.2019.07.005

  2. N.N.R. Ahmad, W.J.N. Fernando, M.H. Uzir, Parametric evaluation using mechanistic model for release rate of phosphate ions from chitosan-coated phosphorus fertilizer pellets. Biosyst. Eng. 129, 78–86 (2015). https://doi.org/10.1016/j.biosystemseng.2014.09.015

    Article  Google Scholar 

  3. S. Ahmad, M. Ahmad, K. Manzoor, R. Purwar and S. Ikram, A review on latest innovations in natural gums based hydrogels: Preparations and applications. Int. J. Biolo. Macromole. 136, 870–890 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.113

  4. T. Ahmed Khan, M.E.T. Zakaria, H.J. Kim, S. Ghazali, S.S. Jamari, Carbonaceous microsphere-based superabsorbent polymer as filler for coating of NPK fertilizer: fabrication, properties, swelling, and nitrogen release characteristics. J. Appl. Polym. Sci. 137, 48396 (2019).

  5. K. Alharbi, A. Ghoneim, A. Ebid, H. El-Hamshary, M.H. El-Newehy, Controlled release of phosphorous fertilizer bound to carboxymethyl starch-g-polyacrylamide and maintaining a hydration level for the plant. J. Biolo. Macro. 116, 224–231 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.182

    Article  CAS  Google Scholar 

  6. K. Al Rohily, H. El-Hamshary, A. Ghoneim, A. Modaihsh, Controlled release of phosphorus from superabsorbent phosphate-bound alginate-graft-polyacrylamide: resistance to soil cations and release mechanism. ACS. Omega. 5(51), 32919–32929 (2020). https://doi.org/10.1021/acsomega.0c03740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. F. Amalina, A.S. Abd Razak, S. Krishnan, A.W. Zularisam, M. Nasrullah, A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability—a review. Clean. Matals. 3, 100045 (2020)

    Article  Google Scholar 

  8. G. Andani, H. Helmiyati, Synthesis and characterization of hydrogel NaCMC-g-poly (AA-co-AAm) modified by rice husk ash as macronutrient NPK slow-release fertilizer superabsorbent. In: IOP pub, Mater. Sci. Eng. vol. 763, pp. 012005 (2020). https://doi.org/10.1088/1757-899X/763/1/012005

  9. F. Barahona, C.L. Bardliving, A. Phifer, J.G. Bruno, C.A. Batt, An aptasensor based on polymer-gold nanoparticle composite microspheres for the detection of malathion using surface-enhanced raman spectroscopy. Ind. Biotechnol. 9, 42 (2013). https://doi.org/10.1089/ind.2012.0029

    Article  CAS  Google Scholar 

  10. C.R. Bauli, G.F. Lima, A.G. de Souza, R.R. Ferreira, and D.S. Rosa, Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. J. Col. Surfa. 623, 126771 (2021). https://doi.org/10.1016/j.colsurfa.2021.126771

  11. P. Boonying, K. Boonpavanitchakul, S. Amnuaypanich, W. Kangwansupamonkon, Natural rubber-lignin composites modified with natural rubber-graft-polyacrylamide as an effective coating for slow-release fertilizers. Ind. Crops Prod. 191, 116018 (2023). https://doi.org/10.1016/j.indcrop.2022.116018

  12. F. Bruna, I. Pavlovic, R. Celis, C. Barriga, J. Cornejo, M.A. Ulibarri, Organohydrotalcites as novel supports for the slow release of the herbicide terbuthylazine. App. Clay Sci. 42, 194–200 (2008). https://doi.org/10.1016/j.clay.2008.02.001

    Article  CAS  Google Scholar 

  13. V. Bueno, X. Gao, A. Abdul Rahim, P. Wang, S. Bayen, S. Ghoshal, Uptake and translocation of a silica nanocarrier and an encapsulated organic pesticide following foliar application in tomato plants. Environ. Sci. Technol. 56(10), 6722–6732 (2022). https://doi.org/10.1021/acs.est.1c00447

    Article  PubMed  CAS  Google Scholar 

  14. E.V.R. Campos, J.L.D. Oliveira, C.M.G. da Silva, M. Pascoli, T. Pasquoto, R. Lima, L. Fernandes Fraceto, Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci. Rep. 5, 13809 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Y. Cao, L. Huang, J. Chen, J. Liang, S. Long, Y. Lu, Development of a controlled release formulation based on a starch matrix system. Inter. J. Pharm. 298(1), 108–116 (2005)

    Article  CAS  Google Scholar 

  16. N.D. Chakkalakkal, M. Thomas, P.S. Chittillapilly, A. Sujith, P.D. Anjali, Electrospun polymer nanocomposite membrane as a promising seed coat for controlled release of agrichemicals and improved germination: Towards a better agricultural prospect. J. Clean. Prodn., 377, 134479 (2022). https://doi.org/10.1016/j.jclepro.2022.134479

  17. C. Chen, Z. Yuan, H.T. Chang, F. Lu, Z. Li, C. Lu, Silver nanoclusters as fluorescent nanosensors for selective and sensitive nitrite detection. Anal. Methods. 8(12), 2628–2633 (2016). https://doi.org/10.1039/C6AY00214E

    Article  CAS  Google Scholar 

  18. J. Chen, W. Wang, Y. Xu, X. Zhang, Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica. J. Agric. Food Chem. 59(1), 307–311 (2011). https://doi.org/10.1021/jf103640t

    Article  PubMed  CAS  Google Scholar 

  19. T.S. Daitx, M. Giovanela, L.N. Carli, R.S. Mauler, Biodegradable polymer/clay systems for highly controlled release of NPK fertilizer. Pol. Adv. Tech. 30(3), 631–639 (2018). https://doi.org/10.1002/pat.4499

    Article  CAS  Google Scholar 

  20. M.Del Carmen Galán-Jiménez, E. Morillo, F. Bonnemoy, C. Mallet, T. Undabeytia, A sepiolite-based formulation for slow release of the herbicide mesotrione. App. Clay. Sci. 189, 105503 (2020). https://doi.org/10.1016/j.clay.2020.105503

  21. A.D. De Oliveira, C.A.G. Beatrice, Polymer nanocomposites with different types of nanofiller. In S. Subbarayan (eds) Nanocomposites: Recent Evolutions, pp. 103–104, BoD (2018)

  22. G. Dong, Z. Mu, D. Liu, L. Shang, W. Zhang, Y. Gao, M. Zhao, X. Zhang, S. Chen, M. Wei, Starch phosphate carbamate hydrogel based slow-release urea formulation with good waterretentivity. J. Biol. Macromol. 190, 189–197 (2021). https://doi.org/10.1016/j.ijbiomac.2021.08.234

  23. K. Dos Santos Caetano, D. S. da Rosa, T. M. Pizzolato, P. A. M. dos Santos, R. Hinrichs, E. V. Benvenutti, T. M. H. Costa, MWCNT/zirconia porous composite applied as electrochemical sensor for determination of methyl parathion. Microporous. Mesopo. Mater. 309, 110583 (2020). https://doi.org/10.1016/j.micromeso.2020.110583

  24. S.M. Dourado Junior, E.S. Nunes, R.P. Marques, L.S. Rossino, F.J. Quites, J.R. Siqueira, J.A. Moreto, Controlled release behavior of sulfentrazone herbicide encapsulated in Ca-ALG microparticles: preparation, characterization, mathematical modeling and release tests in field trial weed control. J. Materi. Sci. 52, 9491–9507 (2017)

    Article  Google Scholar 

  25. T. El Assimi, M. Chaib, M. Raihane, A. El Meziane, M. Khouloud, R. Benhida, M. Lahcini, Poly (ε-caprolactone)-g-guar gum and poly (ε-caprolactone)-g-halloysite nanotubes as coatings for slow-release DAP fertilizer. J. Polym. Environ. 28, 2078–2090 (2020)

    Article  Google Scholar 

  26. T. El Assimi, M. Raihane, R. Beniazza, H. B. Youcef, M. Khouloud, M. H. V. Baouab, M. Lahcini, Polymethyl methacrylate-g-carboxy-methylcellulose as an amphiphilic coating material for slow-release fertilizer. Prog. Org. Coat. 172, 107102 (2022). https://doi.org/10.1016/j.porgcoat.2022.107102

  27. S. Fertahi, I. Bertrand, M. Ilsouk, A. Oukarroum, Y. Zeroual, A. Barakat, New generation of controlled release phosphorus fertilizers based on biological macromolecules: effect of formulation properties on phosphorus release. J. Bio. Marco. 143, 153–162 (2021). https://doi.org/10.1016/j.ijbiomac.2019.12.005

    Article  CAS  Google Scholar 

  28. R. Grillo, A.E. Pereira, C.S. Nishisaka, R. De Lima, K. Oehlke, R. Greiner, L.F. Fraceto, Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J. Hazard. Mater. 278, 163–171 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.079

    Article  PubMed  CAS  Google Scholar 

  29. D.T. Gungula, F.P. Andrew, J. Joseph, S.A. Kareem, J.T. Barminas, E.F. Adebayo, A.M. Saddiq, V.T. Tame, I. Dere, W.J. Ahinda, R. Ator, Formulation and characterization of water retention and slow-release urea fertilizer based on Borassus aethiopum starch and Maesopsis eminiihydrogels. Result. Mater. 12, 100223 (2021). https://doi.org/10.1016/j.rinma.2021.100223

  30. M.S. Haydar, S. Ghosh, P. Mandal, Application of iron oxide nanoparticles as micronutrient fertilizer in mulberry propagation. J Plant Growth Regul 41, 1726–1746 (2021). https://doi.org/10.1007/s00344-021-10413-3

    Article  CAS  Google Scholar 

  31. F. He, Q. Zhou, L. Wang, G. Yu, J. Li, Y. Feng, Fabrication of a sustained release delivery system for pesticides using interpenetrating polyacrylamide/alginate/montmorillonite nanocompositehydrogels. App.Clay.Sci. 183,105347 (2019). https://doi.org/10.1016/j.clay.2019.105347

  32. B. Huang, F. Chen, Y. Shen, C. An, N. Li, J. Jiang, C. Wang, C. Sun, X. Zhao, B. Cui, Z. Zeng, Preparation, characterization, and evaluation of Pyraclostrobin Nanocapsules by in situ polymerization. Nanomaterials 12(3), 549 (2022). https://doi.org/10.3390/nano12030549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. K.R.M. Ibrahim, F.E. Babadi, R. Yunus, Comparative performance of different urea coating materials for slow release. Particuology 17, 165–172 (2014)

    Article  Google Scholar 

  34. T. Jamnongkan, S. J. S. J. U. Kaewpirom, Controlled-release fertilizer based on chitosan hydrogel: phosphorus release kinetics. Sci. J. UBU. 1(1), 43–50 (2010)

  35. L. Javazmi, A. Young, G.J. Ash, T. Low, Kinetics of slow release of nitrogen fertilizer from multi-layered nanofibrous structures. Sci. Rep. 11(1), 1–8 (2021). https://doi.org/10.1038/s41598-021-84460-x

    Article  CAS  Google Scholar 

  36. H. Kalita, V.S. Palaparthy, M.S. Baghini, M. Aslam, Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon 165, 9–17 (2020). https://doi.org/10.1016/j.carbon.2020.04.021

    Article  CAS  Google Scholar 

  37. S.A. Kareem, I. Dere, D.T. Gungula, F.P. Andrew, A.M. Saddiq, E.F. Adebayo, V.T. Tame, H.M. Kefas, J. Joseph, D.O. Patrick, Synthesis and characterization of slow-release fertilizer hydrogel based on hydroxy propyl methyl cellulose, polyvinyl alcohol, glycerol and blended paper. Gels. 7(4), 262 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. M. Z. H. Khan, M. R. Islam, N. Nahar, M. R. Al-Mamun, M. A. S. Khan, M. A. Matin, Synthesis and characterization of nanozeolite based composite fertilizer for sustainable release and use efficiency of nutrients. Heliyon, 7(1), e06091 (2021). https://doi.org/10.1016/j.heliyon.2021.e06091

  39. V. Krishnamoorthy, S. Rajiv, Tailoring electrospun polymer blend carriers for nutrient delivery in seed coating for sustainable agriculture. J. Clean. Prod. 177, 69–78 (2018) https://doi.org/10.1016/j.jclepro.2017.12.141

  40. S. Kumar, B. Gaurav, S. Amit, M. C. Sidhu, D. Neeraj, Herbicide loaded carboxymethyl cellulose nanocapsules as potential carrier in agri nanotechnology. Sci. Adv. Mater. 7(6), 1143–1148 (2015). https://doi.org/10.1166/sam.2015.2243

  41. Y. Kumar, K.N. Tiwari, T. Singh, R. Raliya, Nanofertilizers and their role in sustainable agriculture. Ann Plant Soil Res. 23(3), 238–255 (2021)

    Article  Google Scholar 

  42. Y. Kusumastuti, A. Istiani, C.W. Purnomo, Chitosan-based polyion multilayer coating on NPK fertilizer as controlled released fertilizer. Adv. Mat. Sci. Eng. (2019). https://doi.org/10.1155/2019/2958021

    Article  Google Scholar 

  43. A. Lateef, R. Nazir, N. Jamil, S. Alam, R. Shah, M.N. Khan, M. Saleem, Synthesis and characterization of zeolite based nano–composite: an environment friendly slow release fertilizer. Micro. Meso. Mater. 232, 174–183 (2016). https://doi.org/10.1016/j.micromeso.2016.06.020

    Article  CAS  Google Scholar 

  44. D. Liang, Y. Wang, H. Shi, Z. Luo, R. L. Quirino, Q. Lu, C. Zhang, Controllable release fertilizer with low coating content enabled by superhydrophobic castor oil-based polyurethane nanocomposites prepared through a one-step synthetic strategy. Ind. Crop. Prod. 189, 115803 (2022). https://doi.org/10.1016/j.indcrop.2022.115803

  45. D. Liang, C. Xia, H. Huang, Y. Liu, Z. Ma, S. Li, Z. Meng, Weed control and slow-release behavior of 2-methyl-4-chlorophenoxyacetate intercalated layered double hydroxide. Coll. Surf. 658, 130661 (2022). https://doi.org/10.1016/j.colsurfa.2022.130661

  46. L.T. Lim, R. Auras, M. Rubino, Processing technologies for poly (lactic acid). Prog. Polym. Sci. 33(8), 820–852 (2008). https://doi.org/10.1016/j.progpolymsci.2008.05.004

  47. S.M. Lohmousavi, H.H.S. Abad, G. Noormohammadi, B. Delkhosh, Synthesis and characterization of a novel controlled release nitrogen-phosphorus fertilizer hybrid nanocomposite based on banana peel cellulose and layered double hydroxides nanosheets. Arab. J. Chem. 13(9), 6977–6985 (2020)

    Article  CAS  Google Scholar 

  48. Y. Lu, K. Xu, L. Zhang, M. Deguchi, H. Shishido, T. Arie, K. Takei, Multimodal plant healthcare flexible sensor system. ACS Nano 14(9), 10966–10975 (2020). https://doi.org/10.1021/acsnano.0c03757

    Article  PubMed  CAS  Google Scholar 

  49. J. Martinazzo, D.K. Muenchen, A.N. Brezolin, A.M. Cezaro, A.A. Rigo, A. Manzoli, C. Steffens, Cantilever nanobiosensor using tyrosinase to detect atrazine in liquid medium. J. Environ. Sci. Health. B 53(4), 229–236 (2018). https://doi.org/10.1080/03601234.2017.1421833

    Article  PubMed  CAS  Google Scholar 

  50. S. Mohammadi‐Khoo, P. N. Moghadam, A. R. Fareghi, N. Movagharnezhad, Synthesis of a cellulose‐based hydrogel network: Characterization and study of urea fertilizer slow release. J. Appl. Polym. Sci. 133(5), (2016). https://doi.org/10.1002/app.42935

  51. R.R. Mohamed, M.E. Fahim, S. Soliman, Development of hydrogel based on Carboxymethyl cellulose/poly (4-vinylpyridine) for controlled releasing of fertilizers. BMC Chem. 16, 52 (2022). https://doi.org/10.1186/s13065-022-00846-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. D.M. Nascimento, Y.L. Nunes, M.C. Figueirêdo, H.M. de Azeredo, F.A. Aouada, J.P. Feitosa, M.F. Rosa, A. Dufresne, Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem. 20(11), 2428–2448 (2018)

    Article  CAS  Google Scholar 

  53. N. Nachev, M. Spasova, P. Tsekova, N. Manolova, I. Rashkov, M. Naydenov, Electrospun polymer-fungicide nanocomposites for grapevine protection. Polymers. 13(21), 3673 (2021) https://doi.org/10.3390/polym13213673

  54. N. Nesakumar, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan, Electrochemical acetylcholinesterase biosensor based on ZnO nanocuboids modified platinum electrode for the detection of carbosulfan in rice. Biosens. Bioelectron. 77, 1070–1077 (2016)

    Article  PubMed  CAS  Google Scholar 

  55. R. Noor, H. Yasmin, N. Ilyas, A. Nosheen, M. N. Hassan, S. Mumtaz, N. Khan, A. Ahmad, P. Ahmad, Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress. Chemosphere 292, 133201 (2022)

    Article  PubMed  CAS  Google Scholar 

  56. A. B. Nörnberg, V. R. Gehrke, H. P. Mota, E. R. Camargo, A. R. Fajardo, Alginate-cellulose biopolymeric beads as efficient vehicles for encapsulation and slow-release of herbicide. Coll. Surf. 583, 123970 (2019). https://doi.org/10.1016/j.colsurfa.2019.123970

  57. V. Ojijo, S.S. Ray, Processing strategies in bionanocomposites. Prog. Polym. Sci. 38, 1543–1589 (2013)

    Article  CAS  Google Scholar 

  58. A. Olad, H. Gharekhani, A. Mirmohseni, A. Bybordi, Superabsorbent nanocomposite based on maize bran with integration of water-retaining and slow-release NPK fertilizer. Adv. Polym. Technol. 37(6), 1682–1694 (2018)

    Article  CAS  Google Scholar 

  59. A. Olad, H. Zebhi, D. Salari, A. Mirmohseni, A.R. Tabar, Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Mater. Sci. Eng. 90, 333–340 (2018). https://doi.org/10.1016/j.msec.2018.04.083

    Article  CAS  Google Scholar 

  60. K. Pal, S. Chakroborty, P. Panda, N. Nath, S. Soren, Environmental assessment of wastewater management via hybrid nanocomposite matrix implications—an organized review. Environ. Sci. Pollut. Res. 29(51), 76626–76643 (2022)

    Article  CAS  Google Scholar 

  61. S. Patel, J. Bajpai, R. Saini, A. K. Bajpai, S. Acharya, Sustained release of pesticide (Cypermethrin) from nanocarriers: an effective technique for environmental and crop protection. Process. Saf. Environ. Prot, 117, 315325 (2018). https://doi.org/10.1016/j.psep.2018.05.012

  62. A.E. Pereira, R. Grillo, N.F. Mello, A.H. Rosa, L.F. Fraceto, Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J. Hazard. Mater. 268, 207–215 (2014). https://doi.org/10.1016/j.jhazmat.2014.01.025

    Article  PubMed  CAS  Google Scholar 

  63. P. Pichetsurnthorn, K. Vattipalli, S. Prasad, Nanoporous impedemetric biosensor for detection of trace atrazine from water samples. Biosens. Bioelectron. 32(1), 155–162 (2012). https://doi.org/10.1016/j.bios.2011.11.055

    Article  PubMed  CAS  Google Scholar 

  64. P.N. Praseetha, A Unique Perspective in Precision of Nano-biotechnology for Sustainable Agricultural Fields. In: Pal K. (eds) Bio-manufactured Nanomaterials Perspectives and Promotion, pp 299–320 (2021). https://doi.org/10.1007/978-3-030-67223-2_14

  65. A. Priyam, N. Yadav, P.M. Reddy, L.O. Afonso, A.G. Schultz, P.P. Singh, Fertilizing benefits of biogenic phosphorous nanonutrients on Solanum lycopersicum in soils with variable pH. Heliyon (2022). https://doi.org/10.1016/j.heliyon.2022.e09144

    Article  PubMed  PubMed Central  Google Scholar 

  66. D. Qiao, H. Liu, L. Yu, X. Bao, G.P. Simon, E. Petinakis, L. Chen, Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr. Polym. 147, 146–154 (2016). https://doi.org/10.1016/j.carbpol.2016.04.010

    Article  PubMed  CAS  Google Scholar 

  67. G.B. Ramírez-Rodríguez, C. Miguel-Rojas, G.S. Montanha, F.J. Carmona, G. Dal Sasso, J.C. Sillero, J. Skov Pedersen, N. Masciocchi, A. Guagliardi, A. Pérez-de-Luque, J.M. Delgado-López, Reducing nitrogen dosage in Triticum durum plants with urea-doped nanofertilizers. Nanomaterials. 10(6), 1043 (2020). https://doi.org/10.3390/nano10061043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. A. Rashidzadeh, A. Olad, Slow-released NPK fertilizer encapsulated by NaAlg-g-poly (AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr. Polym. 114, 269–278 (2014). https://doi.org/10.1016/j.carbpol.2014.08.010

    Article  PubMed  CAS  Google Scholar 

  69. I. Saleem, M. A. Maqsood, M. Z. ur Rehman, T. Aziz, I. A. Bhatti, S. Ali, Potassium ferrite nanoparticles on DAP to formulate slow release fertilizer with auxiliary nutrients. Ecotoxicol. Environ. Saf. 215, 112148 (2021). https://doi.org/10.1016/j.ecoenv.2021.112148

  70. M. Salimi, E. Motamedi, B. Motesharezedeh, H.M. Hosseini and H.A. Alikhani, Starch-g-poly (acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers. J. Environ. Chem. Eng. 8(3), 103765 (2020). https://doi.org/10.1016/j.jece.2020.103765

  71. B. Singh, D.K. Sharma, S. Negi, A. Dhiman, Synthesis and characterization of agar-starch based hydrogels for slow herbicide delivery applications. Int. J. Plast. Technol. 19, 263–274 (2015). https://doi.org/10.1007/s12588-015-9126-z

    Article  Google Scholar 

  72. C. Steffens, S. C. Ballen, E. Scapin, D. M. da Silva, J. Steffens, R. A. Jacques, Advances of nanobiosensors and its application in atrazine detection in water: a review. Sens. Actuator. Rep.100096 (2022). https://doi.org/10.1016/j.snr.2022.100096

  73. H. Tan, Y. Zhang, L. Sun, Y. Sun, H. Dang, Y. Yang, D. Jiang, Preparation of nano sustained-release fertilizer using natural degradable polymer polylactic acid by coaxial electrospinning. J. Bio. Macromol. 193, 903–914 (2021). https://doi.org/10.1016/j.ijbiomac.2021.10.181

    Article  CAS  Google Scholar 

  74. W. Tanan, J. Panichpakdee, P. Suwanakood, S. Saengsuwan, Biodegradable hydrogels of cassava starch-g-polyacrylic acid/natural rubber/polyvinyl alcohol as environmentally friendly and highly efficient coating material for slow-release urea fertilizers. J. Ind. Eng. Chem. 101, 237–252 (2021). https://doi.org/10.1016/j.c.2021.06.008

    Article  CAS  Google Scholar 

  75. M.B. Taşkın, Ö. Şahin, H. Taskin, O. Atakol, A. Inal, and A. Gunes, Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant. J. Plant. Nutrition. 41(9), 1148–1154 (2018). https://doi.org/10.1080/01904167.2018.1433836

  76. Umar, W., Czinkota, I., Gulyás, M., Aziz, T., & Hameed, M. K.: Development and characterization of slow release N and Zn fertilizer by coating urea with Zn fortified nano-bentonite and ZnO NPs using various binders. Env. Tech.Inno. 26, 102250 (2022) https://doi.org/10.1016/j.eti.2021.102250

  77. S. Wang, X. Li, K. Ren, R. Huang, G. Lei, L. Shen, Y. Zhan, L. Jiang, Surface modification of pyrophyllite for optimizing properties of castor oil-based polyurethane composite and its application in controlled-release fertilizer. Arab. J. Chem. 16(2), 104400 (2023). https://doi.org/10.1016/j.arabjc.2022.104400

  78. Y. Wang, M. Liu, B. Ni, L. Xie, X. Zhang, Preparation and properties of novel slow-release PK agrochemical formulations based on carboxymethylcellulose-graft-poly (acrylic acid-co-itaconic acid) super absorbents. J. Macromol. Sci. 48(10), 806–815 (2011). https://doi.org/10.1021/ie900254b

    Article  CAS  Google Scholar 

  79. X. Xu, J. Wang, Y. Tang, X. Cui, D. Hou, H. Jia, S. Wang, L. Guo, J. Wang, A. Lin, Mitigating soil salinity stress with titanium gypsum and biochar composite materials: improvement effects and mechanism. Chemosphere 321, 138127 (2023)

    Article  PubMed  CAS  Google Scholar 

  80. Z. Xu, T. Tang, Q. Lin, J. Yu, C. Zhang, X. Zhao, M. Kah, L. Li, Environmental risks and the potential benefits of nanopesticides: a review. Environ. Chem. Lett. 20(3), 2097–2108 (2022)

    Article  CAS  Google Scholar 

  81. C.F. Yamamoto, E.I. Pereira, L.H. Mattoso, T. Matsunaka, C. Ribeiro, Slow release fertilizers based on urea/urea–formaldehyde polymer nanocomposites. J. Chem. Eng. 287, 390–397 (2016). https://doi.org/10.1016/j.cej.2015.11.023

    Article  CAS  Google Scholar 

  82. Z. Yu, G. Zhao, M. Liu, Y. Lei, M. Li, Fabrication of a novel atrazine biosensor and its subpart-per-trillion levels sensitive performance. Environ. Sci. Technol. 44(20), 7878–7883 (2010)

    Article  PubMed  CAS  Google Scholar 

  83. H. Zhang, H. Yang, J. Shao, Y. Chen, S. Zhang, H. Chen, Multifunctional carboxymethyl cellulose sodium encapsulated phosphorus-enriched biochar composites: Multistage adsorption of heavy metals and controllable release of soil fertilization. Chem. Eng. J. 453, 139809 (2023)

    Article  CAS  Google Scholar 

  84. M. Zhang, B. Gao, J. Chen, Y. Li, A.E. Creamer, H. Chen, Slow-release fertilizer encapsulated by graphene oxide films. J. Chem. Eng. 255, 107–113 (2014). https://doi.org/10.1016/j.cej.2014.06.023

    Article  CAS  Google Scholar 

  85. X. Zhang, J. Qu, H. Li, S. La, Y. Tian, L. Gao, Biochar addition combined with daily fertigation improves overall soil quality and enhances water-fertilizer productivity of cucumber in alkaline soils of a semi-arid region. Geoderma 363, 114170 (2020)

    Article  CAS  Google Scholar 

  86. Y. Zhang, Y. Jingsong, Y. Rongjiang, W. Xiangping, X. Wenping, Short-term effects of biochar and gypsum on soil hydraulic properties and sodicity in a saline-alkali soil. Pedosphere 30(5), 694–702 (2020)

    Article  Google Scholar 

  87. J. Zhao, R. Song, H. Li, Q. Zheng, S. Li, L. Liu, K. Liu, New formulation to accelerate the degradation of pesticide residues: composite nanoparticles of imidacloprid and 24-epibrassinolide. ACS Omega. 7 (33), 29027–29037 (2022). https://doi.org/10.1021/acsomega.2c02820

  88. T. Zhou, Y. Wang, S. Huang, Y. Zhao, Synthesis composite hydrogels from inorganic-organic hybrids based on leftover rice for environment-friendly controlled-release urea fertilizers. Sci. Total. Environ. 615, 422–430 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.084

    Article  PubMed  CAS  Google Scholar 

  89. X. Zhou, D. Xu, J. Yang, Z. Yan, Z. Zhang, B. Zhong, X. Wang, Treatment of distiller grain with wet-process phosphoric acid leads to biochar for the sustained release of nutrients and adsorption of Cr (VI). J. Hazard. Mater. 441, 129949 (2023)

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Authors greatly acknowledge the financial support from Kerala State Council for Science, Technology and Environment, Government of Kerala, for the project KSCSTE/655/2022-ETP 290/2022.

Author information

Authors and Affiliations

Authors

Contributions

Both authors equally contributed for the work. Figures and Tables are drawn by both authors.All authors reviewed the manuscript

Corresponding author

Correspondence to P. Nair Praseetha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feba Mohan, M., Praseetha, P.N. Prospects of Biopolymers Based Nanocomposites for the Slow and Controlled Release of Agrochemicals Formulations. J Inorg Organomet Polym 33, 3845–3860 (2023). https://doi.org/10.1007/s10904-023-02695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02695-9

Keywords

Navigation