Skip to main content

Advertisement

Log in

Metal–Organic Frameworks (MOFs): The Next Generation of Materials for Catalysis, Gas Storage, and Separation

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) have emerged as a promising class of porous materials for various applications such as catalysis, gas storage, and separation. This review provides an overview of MOFs’ synthesis, properties, and applications in these areas. The basic concepts of MOFs, and their significance in catalysis, gas storage, and separation are introduced. The general synthetic approaches for MOFs, the factors influencing MOF synthesis, and the recent advancements in MOF synthesis are discussed. The structural properties, porosity, surface area, chemical and thermal stability, and tunability of MOFs are described. The review also covers MOFs’ applications in catalysis, including homogeneous and heterogeneous catalysis and biocatalysis, as well as gas storage, including hydrogen, methane, and carbon dioxide storage. Additionally, it highlights MOFs application in gas separation, such as separating hydrogen, carbon dioxide, and nitrogen from other gases. Finally, the challenges in MOF synthesis and characterization, future research directions, and potential for commercialization and industrial applications are discussed. This review demonstrates the versatility and potential of MOFs as next-generation materials for catalysis, gas storage, and separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All the data were included within the article.

References

  1. V.R. Bakuru, B. Velaga, N.R. Peela, S.B. Kalidindi, Hybridization of Pd nanoparticles with UiO-66 (Hf) metal-organic framework and the effect of nanostructure on the catalytic properties. Chem. A Eur. J. 24(60), 15978–15982 (2018)

    Article  CAS  Google Scholar 

  2. D. Chakraborty, D. Musib, R. Saha, A. Das, M.K. Raza, V. Ramu, A. Bhaumik, Highly stable tetradentate phosphonate-based green fluorescent Cu-MOF for anticancer therapy and antibacterial activity. Mater. Today Chem. 24, 100882 (2022)

    Article  CAS  Google Scholar 

  3. S.P. Dunuweera, R.M.G. Rajapakse, Cement types, composition, uses and advantages of nanocement, environmental impact on cement production, and possible solutions. Adv. Mater. Sci. Eng. 2018, 1–11 (2018)

    Article  Google Scholar 

  4. C. Wang, Z. Xie, K.E. deKrafft, W. Lin, Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133(34), 13445–13454 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. P. Arab, M.G. Rabbani, A.K. Sekizkardes, T. Slamoğlu, H.M. El-Kaderi, Copper (I)-catalyzed synthesis of nanoporous azo-linked polymers: impact of textural properties on gas storage and selective carbon dioxide capture. Chem. Mater. 26(3), 1385–1392 (2014)

    Article  CAS  Google Scholar 

  6. X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46(10), 2660–2677 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. S.J. Yang, J.H. Cho, K.S. Nahm, C.R. Park, Enhanced hydrogen storage capacity of Pt-loaded CNT@ MOF-5 hybrid composites. Int. J. Hydrogen Energy 35(23), 13062–13067 (2010)

    Article  CAS  Google Scholar 

  8. P.P. Bag, G.P. Singh, S. Singha, G. Roymahapatra, Synthesis of metal-organic frameworks (MOFs) and their biological, catalytic and energetic application: a mini review. Eng. Sci. 13(2), 1–10 (2020)

    Google Scholar 

  9. N. Saffon-Merceron, M.C. Barthélémy, C. Laurent, I. Fabing, P. Hoffmann, A. Vigroux, Two new metal–organic framework structures derived from terephthalate and linear trimetallic zinc building units. Inorg. Chim. Acta 426, 15–19 (2015)

    Article  CAS  Google Scholar 

  10. S. Głowniak, B. Szczęśniak, J. Choma, M. Jaroniec, Advances in microwave synthesis of nanoporous materials. Adv. Mater. 33(48), 2103477 (2021)

    Article  Google Scholar 

  11. J. Klinowski, F.A.A. Paz, P. Silva, J. Rocha, Microwave-assisted synthesis of metal–organic frameworks. Dalton Trans. 40(2), 321–330 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. K. Ralphs, C. Hardacre, S.L. James, Application of heterogeneous catalysts prepared by mechanochemical synthesis. Chem. Soc. Rev. 42(18), 7701–7718 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. B.F. Rivadeneira-Mendoza, O.A. Estrela Filho, K.J. Fernández-Andrade, F. Curbelo, F.F. da Silva, R. Luque, J.M. Rodríguez-Díaz, MOF@ biomass hybrids: Trends on advanced functional materials for adsorption. Environ. Res. 216, 114424 (2023)

    Article  CAS  PubMed  Google Scholar 

  14. P. Kumar, V. Bansal, K.H. Kim, E.E. Kwon, Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment. J. Ind. Eng. Chem. 62, 130–145 (2018)

    Article  CAS  Google Scholar 

  15. W. Lu, Z. Wei, Z.Y. Gu, T.F. Liu, J. Park, J. Park, H.C. Zhou, Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43(16), 5561–5593 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. A.A. Tezerjani, R. Halladj, S. Askari, Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties. RSC Adv. 11(32), 19914–19923 (2021)

    Article  Google Scholar 

  17. T. Chalati, P. Horcajada, R. Gref, P. Couvreur, C. Serre, Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem. 21(7), 2220–2227 (2011)

    Article  CAS  Google Scholar 

  18. T.H. Abdtawfeeq, Z.A. Farhan, K. Al-Majdi, M.A. Jawad, R.S. Zabibah, Y. Riadi, M.A. Shams, Ultrasound-assisted and one-pot synthesis of new Fe3O4/Mo-MOF magnetic nano polymer as a strong antimicrobial agent and efficient nanocatalyst in the multicomponent synthesis of novel pyrano [2, 3-d] pyrimidines derivatives. J. Inorgan Organometallic Polym. Mater. 33(2), 472–483 (2023)

    Article  CAS  Google Scholar 

  19. M. Asadi, M.R. Naimi-Jamal, L. Panahi, Green synthesis of carbamates and amides via Cu@ Sal-Cs catalyzed C-O and C–N oxidative coupling accelerated by microwave irradiation. Sci. Rep. 11(1), 1–15 (2021)

    Article  Google Scholar 

  20. L.H.T. Nguyen, T.T.T. Nguyen, M.H.D. Dang, P.H. Tran, T.L.H. Doan, Heterocyclic reaction inducted by Brønsted-Lewis dual acidic Hf-MOF under microwave irradiation. Mol. Catal. 499, 111291 (2021)

    Article  CAS  Google Scholar 

  21. G. Báti, D. Csókás, T. Yong, S.M. Tam, R.R. Shi, R.D. Webster, M.C. Stuparu, Mechanochemical synthesis of corannulene-based curved nanographenes. Angew. Chem. 132(48), 21804–21810 (2020)

    Article  Google Scholar 

  22. Q. Ren, F. Wei, H. Chen, D. Chen, B. Ding, Preparation of Zn-MOFs by microwave-assisted ball milling for removal of tetracycline hydrochloride and Congo red from wastewater. Green Processing and Synthesis 10(1), 125–133 (2021)

    Article  CAS  Google Scholar 

  23. Y. Xin, S. Peng, J. Chen, Z. Yang, J. Zhang, Continuous flow synthesis of porous materials. Chin. Chem. Lett. 31(6), 1448–1461 (2020)

    Article  CAS  Google Scholar 

  24. E.G. Rasmussen, J. Kramlich, I.V. Novosselov, Synthesis of metal-organic framework HKUST-1 via tunable continuous flow supercritical carbon dioxide reactor. Chem. Eng. J. 450, 138053 (2022)

    Article  CAS  Google Scholar 

  25. J.L. Segura, S. Royuela, M.M. Ramos, Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 48(14), 3903–3945 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. K.K. Gangu, S.B. Jonnalagadda, A review on metal-organic frameworks as congenial heterogeneous catalysts for potential organic transformations. Front. Chem. 9, 747615 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R.R. Bolt, J.A. Leitch, A.C. Jones, W.I. Nicholson, D.L. Browne, Continuous flow mechanochemistry: reactive extrusion as an enabling technology in organic synthesis. Chem. Soc. Rev. (2022). https://doi.org/10.1039/D1CS00657F

    Article  PubMed  Google Scholar 

  28. S. Yadav, R. Dixit, S. Sharma, S. Dutta, K. Solanki, R.K. Sharma, Magnetic metal–organic framework composites: structurally advanced catalytic materials for organic transformations. Mater. Adv. 2(7), 2153–2187 (2021)

    Article  CAS  Google Scholar 

  29. Y. Su, H.P. Li, M. Zhang, X.W. Ding, J.H. Xu, Q. Chen, G.W. Zheng, Regioselectivity Inversion of an O-Methyltransferase via Semi-rational Mutagenesis Combined with Metal Ion Substitution. ChemCatChem (2022). https://doi.org/10.1002/cctc.202200844

    Article  Google Scholar 

  30. L. Li, X.S. Wang, T.F. Liu, J. Ye, Titanium-based MOF materials: from crystal engineering to photocatalysis. Small Methods 4(12), 2000486 (2020)

    Article  CAS  Google Scholar 

  31. M. Afkhami-Ardekani, M.R. Naimi-Jamal, S. Doaee, S. Rostamnia, Solvent-free mechanochemical preparation of metal-organic framework ZIF-67 impregnated by Pt nanoparticles for water purification. Catalysts 13(1), 9 (2022)

    Article  Google Scholar 

  32. T.K. Vo, V.C. Nguyen, M. Song, D. Kim, K.S. Yoo, B.J. Park, J. Kim, Microwave-assisted continuous-flow synthesis of mixed-ligand UiO-66 (Zr) frameworks and their application to toluene adsorption. J. Ind. Eng. Chem. 86, 178–185 (2020)

    Article  CAS  Google Scholar 

  33. B. Tu, L. Diestel, Z.L. Shi, W.N. Bandara, Y. Chen, W. Lin, Q. Li, Harnessing bottom-up self-assembly to position five distinct components in an ordered porous framework. Angew. Chem. Int. Ed. 58(16), 5348–5353 (2019)

    Article  CAS  Google Scholar 

  34. L. Gong, Y. Liu, J. Ren, A.M. Al-Enizi, A. Nafady, Y. Ye, S. Ma, Utilization of cationic microporous metal-organic framework for efficient Xe/Kr separation. Nano Res. 15(8), 7559–7564 (2022)

    Article  CAS  Google Scholar 

  35. X. Zhu, J. Tong, L. Zhu, D. Pan, In situ growth of ZIF-8 on carboxymethyl chitosan beads for improved adsorption of lead ion from aqueous solutions. Int. J. Biol. Macromol. 205, 473–482 (2022)

    Article  CAS  PubMed  Google Scholar 

  36. A. Altaf, N. Baig, M. Sohail, M. Sher, A. Ul-Hamid, M. Altaf, Covalent organic frameworks: advances in synthesis and applications. Mater. Today Commun. 28, 102612 (2021)

    Article  CAS  Google Scholar 

  37. W. Wu, J. Liu, Z. Li, X. Zhao, G. Liu, S. Liu, W. Liu, Surface-functionalized nanoMOFs in oil for friction and wear reduction and antioxidation. Chem. Eng. J. 410, 128306 (2021)

    Article  CAS  Google Scholar 

  38. H. Zhang, Y. Muhammad, X. Cui, Z. Zhang, L. Liu, Z. Chu, Z. Zhao, Engineering bidirectional CMC-foam-supported HKUST-1@ graphdiyne with enhanced heat/mass transfer for the highly efficient adsorption and regeneration of acetaldehyde. J. Mater. Chem. A 9(7), 4066–4074 (2021)

    Article  CAS  Google Scholar 

  39. E. Choi, J.I. Choi, Y.J. Kim, Y.J. Kim, K. Eum, Y. Choi, D.W. Kim, Graphene nanoribbon hybridization of zeolitic imidazolate framework membranes for intrinsic molecular separation. Angew. Chem. 134(49), e202214269 (2022)

    Article  Google Scholar 

  40. E. Haghighi, S. Zeinali, Nanoporous MIL-101 (Cr) as a sensing layer coated on a quartz crystal microbalance (QCM) nanosensor to detect volatile organic compounds (VOCs). RSC Adv. 9(42), 24460–24470 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D. Zou, D. Liu, Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Mater. Today Chem. 12, 139–165 (2019)

    Article  CAS  Google Scholar 

  42. H. Shayegan, Y.D. Farahani, V. Safarifard, A pillar-layer metal-organic framework as a turn-on luminescent sensor for highly selective and sensitive detection of Zn (II) ion. J. Solid State Chem. 279, 120968 (2019)

    Article  CAS  Google Scholar 

  43. J. Martí-Rujas, Structural elucidation of microcrystalline MOFs from powder X-ray diffraction. Dalton Trans. 49(40), 13897–13916 (2020)

    Article  PubMed  Google Scholar 

  44. S.R. Hosseini, M. Omidkhah, Z.M. Lighvan, S. Norouzbahari, A. Ghadimi, Synthesis, characterization, and gas adsorption performance of an efficient hierarchical ZIF-11@ ZIF-8 core–shell metal–organic framework (MOF). Sep. Purif. Technol. 307, 122679 (2023)

    Article  CAS  Google Scholar 

  45. M.Z. Hussain, G.S. Pawar, Z. Huang, A.A. Tahir, R.A. Fischer, Y. Zhu, Y. Xia, Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: a correlational study. Carbon 146, 348–363 (2019)

    Article  CAS  Google Scholar 

  46. M.A. Springuel-Huet, A. Nossov, Z. Adem, F. Guenneau, C. Volkringer, T. Loiseau, A. Gédéon, 129Xe NMR study of the framework flexibility of the porous hybrid MIL-53 (Al). J. Am. Chem. Soc. 132(33), 11599–11607 (2010)

    Article  CAS  PubMed  Google Scholar 

  47. X. Shi, X. Zhang, F. Bi, Z. Zheng, L. Sheng, J. Xu, Y. Yang, Effective toluene adsorption over defective UiO-66-NH2: an experimental and computational exploration. J. Mol. Liq. 316, 113812 (2020)

    Article  CAS  Google Scholar 

  48. Y. Sun, Z. Hu, D. Zhao, K. Zeng, Mechanical properties of microcrystalline metal–organic frameworks (MOFs) measured by bimodal amplitude modulated-frequency modulated atomic force microscopy. ACS Appl. Mater. Interfaces. 9(37), 32202–32210 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. H. Deng, S. Grunder, K.E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, O.M. Yaghi, Large-pore apertures in a series of metal-organic frameworks. Science 336(6084), 1018–1023 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. P. Sinha, A. Datar, C. Jeong, X. Deng, Y.G. Chung, L.C. Lin, Surface area determination of porous materials using the Brunauer–Emmett–Teller (BET) method: limitations and improvements. The Journal of Physical Chemistry C 123(33), 20195–20209 (2019)

    Article  CAS  Google Scholar 

  51. Q. Song, S.K. Nataraj, M.V. Roussenova, J.C. Tan, D.J. Hughes, W. Li, E. Sivaniah, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 5(8), 8359–8369 (2012)

    Article  CAS  Google Scholar 

  52. S.B. Patri, S.M. Karekuladh, P. Malingappa, A. Veedhi, MOF-based electrochemical sensors for neurochemicals, in Metal-organic frameworks-based hybrid materials for environmental sensing and monitoring. (CRC Press, Boca Raton, 2022), pp.249–262

    Chapter  Google Scholar 

  53. B. Adeniran, E. Masika, R. Mokaya, A family of microporous carbons prepared via a simple metal salt carbonization route with high selectivity for exceptional gravimetric and volumetric post-combustion CO 2 capture. J. Mater. Chem. A 2(35), 14696–14710 (2014)

    Article  CAS  Google Scholar 

  54. L. Zhai, Y. Qian, Y. Wang, Y. Cheng, J. Dong, S.B. Peh, D. Zhao, In situ formation of micropore-rich titanium dioxide from metal-organic framework templates. ACS Appl. Mater. Interfaces. 10(43), 36933–36940 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. J. Goldsmith, A.G. Wong-Foy, M.J. Cafarella, D.J. Siegel, Theoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offs. Chem. Mater. 25(16), 3373–3382 (2013)

    Article  CAS  Google Scholar 

  56. A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R.A. Fischer, Flexible metal–organic frameworks. Chem. Soc. Rev. 43(16), 6062–6096 (2014)

    Article  CAS  PubMed  Google Scholar 

  57. J.C. Tan, T.D. Bennett, A.K. Cheetham, Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. 107(22), 9938–9943 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. J. Winarta, B. Shan, S.M. Mcintyre, L. Ye, C. Wang, J. Liu, B. Mu, A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal–organic framework. Cryst. Growth Des. 20(2), 1347–1362 (2019)

    Article  Google Scholar 

  59. L.K. Macreadie, E.J. Mensforth, R. Babarao, K. Konstas, S.G. Telfer, C.M. Doherty, M.R. Hill, CUB-5: a contoured aliphatic pore environment in a cubic framework with potential for benzene separation applications. J. Am. Chem. Soc. 141(9), 3828–3832 (2019)

    Article  CAS  PubMed  Google Scholar 

  60. J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, G.N. Karanikolos, CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Microporous Mesoporous Mater. 267, 53–67 (2018)

    Article  CAS  Google Scholar 

  61. A.A. Olajire, Synthesis chemistry of metal-organic frameworks for CO2 capture and conversion for sustainable energy future. Renew. Sustain. Energy Rev. 92, 570–607 (2018)

    Article  CAS  Google Scholar 

  62. C. Montoro, F. Linares, E. Quartapelle Procopio, I. Senkovska, S. Kaskel, S. Galli, J.A. Navarro, Capture of nerve agents and mustard gas analogues by hydrophobic robust MOF-5 type metal–organic frameworks. J. Am. Chem. Soc. 133(31), 11888–11891 (2011)

    Article  CAS  PubMed  Google Scholar 

  63. E. Moumen, A.H. Assen, K. Adil, Y. Belmabkhout, Versatility vs stability. Are the assets of metal–organic frameworks deployable in aqueous acidic and basic media? Coord. Chem. Rev. 443, 214020 (2021)

    Article  CAS  Google Scholar 

  64. M. Müller, S. Hermes, K. Kähler, M.W. van den Berg, M. Muhler, R.A. Fischer, Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: properties of Cu/ZnO@ MOF-5 as catalyst for methanol synthesis. Chem. Mater. 20(14), 4576–4587 (2008)

    Article  Google Scholar 

  65. K. Tan, N. Nijem, Y. Gao, S. Zuluaga, J. Li, T. Thonhauser, Y.J. Chabal, Water interactions in metal organic frameworks. CrystEngComm 17(2), 247–260 (2015)

    Article  CAS  Google Scholar 

  66. H. Bunzen, Chemical stability of metal-organic frameworks for applications in drug delivery. ChemNanoMat 7(9), 998–1007 (2021)

    Article  CAS  Google Scholar 

  67. F. Bigdeli, C.T. Lollar, A. Morsali, H.C. Zhou, Switching in metal–organic frameworks. Angew. Chem. Int. Ed. 59(12), 4652–4669 (2020)

    Article  CAS  Google Scholar 

  68. C.S. Hawes, Coordination sphere hydrogen bonding as a structural element in metal–organic Frameworks. Dalton Trans. 50(18), 6034–6049 (2021)

    Article  CAS  PubMed  Google Scholar 

  69. K.J. Gagnon, H.P. Perry, A. Clearfield, Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 112(2), 1034–1054 (2012)

    Article  CAS  PubMed  Google Scholar 

  70. J.L. Rowsell, O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73(1–2), 3–14 (2004)

    Article  CAS  Google Scholar 

  71. G. Gumilar, Y.V. Kaneti, J. Henzie, S. Chatterjee, J. Na, B. Yuliarto, Y. Yamauchi, General synthesis of hierarchical sheet/plate-like M-BDC (M= Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing. Chem. Sci. 11(14), 3644–3655 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. M. Sánchez-Sánchez, N. Getachew, K. Díaz, M. Díaz-García, Y. Chebude, I. Díaz, Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chem. 17(3), 1500–1509 (2015)

    Article  Google Scholar 

  73. M. Du, L. Li, M. Li, R. Si, Adsorption mechanism on metal organic frameworks of Cu-BTC, Fe-BTC and ZIF-8 for CO 2 capture investigated by X-ray absorption fine structure. RSC Adv. 6(67), 62705–62716 (2016)

    Article  CAS  Google Scholar 

  74. G.P. Li, K. Zhang, P.F. Zhang, W.N. Liu, W.Q. Tong, L. Hou, Y.Y. Wang, Thiol-functionalized pores via post-synthesis modification in a metal–organic framework with selective removal of Hg (II) in water. Inorg. Chem. 58(5), 3409–3415 (2019)

    Article  CAS  PubMed  Google Scholar 

  75. G. Sneddon, A. Greenaway, H.H. Yiu, The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Adv. Energy Mater. 4(10), 1301873 (2014)

    Article  Google Scholar 

  76. Y. Gao, C. Feng, T. Seo, K. Kubota, H. Ito, Efficient access to materials-oriented aromatic alkynes via the mechanochemical Sonogashira coupling of solid aryl halides with large polycyclic conjugated systems. Chem. Sci. 13(2), 430–438 (2022)

    Article  CAS  PubMed  Google Scholar 

  77. G. Lee, D.K. Yoo, I. Ahmed, H.J. Lee, S.H. Jhung, Metal-organic frameworks composed of nitro groups: preparation and applications in adsorption and catalysis. Chem. Eng. J. 451, 138538 (2023)

    Article  CAS  Google Scholar 

  78. D. Huang, Q. An, L. Wang, T. Li, M. Liu, Y. Wu, Multi-active sites in situ formed on Schiff-base Pd (II)/Cu (II) self-assembly monolayer supported on graphene oxide: a simple protocol to enhance the catalytic activity. Mol. Catal. 535, 112846 (2023)

    Article  CAS  Google Scholar 

  79. P. Rani, R. Srivastava, Nucleophilic addition of amines, alcohols, and thiophenol with epoxide/olefin using highly efficient zirconium metal organic framework heterogeneous catalyst. RSC Adv. 5(36), 28270–28280 (2015)

    Article  CAS  Google Scholar 

  80. W. Zhang, R. Ping, X. Lu, H. Shi, F. Liu, J. Ma, M. Liu, Rational design of Lewis acid-base bifunctional nanopolymers with high performance on CO2/epoxide cycloaddition without a cocatalyst. Chem. Eng. J. 451, 138715 (2023)

    Article  CAS  Google Scholar 

  81. Z. Zou, Y. Jiang, K. Song, Pd nanoparticles assembled on metalporphyrin-based microporous organic polymer as efficient catalyst for tandem dehydrogenation of ammonia borane and hydrogenation of nitro compounds. Catal. Lett. 150, 1277–1286 (2020)

    Article  CAS  Google Scholar 

  82. Z.H. Zhu, Y. Liu, C. Song, Y. Hu, G. Feng, B.Z. Tang, Porphyrin-based two-dimensional layered metal–organic framework with sono-/photocatalytic activity for water decontamination. ACS Nano 16(1), 1346–1357 (2021)

    Article  PubMed  Google Scholar 

  83. D. Jiang, A. Urakawa, M. Yulikov, T. Mallat, G. Jeschke, A. Baiker, Size selectivity of a copper metal–organic framework and origin of catalytic activity in epoxide alcoholysis. Chem. A Eur. J. 15(45), 12255–12262 (2009)

    Article  CAS  Google Scholar 

  84. P. Dai, Y. Yao, E. Hu, D. Xu, Z. Li, C. Wang, Self-assembled ZIF-67@ graphene oxide as a cobalt-based catalyst precursor with enhanced catalytic activity toward methanolysis of sodium borohydride. Appl. Surf. Sci. 546, 149128 (2021)

    Article  CAS  Google Scholar 

  85. S. Zhang, J.P.H. Li, J. Zhao, D. Wu, B. Yuan, W.Y. Hernández, T. Li, Direct aerobic oxidation of monoalcohol and diols to acetals using tandem Ru@ MOF catalysts. Nano Res. 14, 479–485 (2021)

    Article  CAS  Google Scholar 

  86. K. Li, J.G. Chen, CO2 hydrogenation to methanol over ZrO2-containing catalysts: insights into ZrO2 induced synergy. ACS Catal. 9(9), 7840–7861 (2019)

    Article  CAS  Google Scholar 

  87. A. Chirila, B.G. Das, P.F. Kuijpers, V. Sinha, B. de Bruin, Application of stimuli-responsive and “non-innocent” ligands in base metal catalysis (Wiley Press, Hoboken, 2019), pp.1–31

    Google Scholar 

  88. Öztürk Düşkünkorur, M. H. (2012). Biopolyester synthesis by enzymatic catalysis and development of nanohybrid systems.

  89. A. Dhakshinamoorthy, E. Montero Lanzuela, S. Navalon, H. Garcia, Cobalt-based metal organic frameworks as solids catalysts for oxidation reactions. Catalysts 11(1), 95 (2021)

    Article  CAS  Google Scholar 

  90. X. Gu, C. Huang, Z. Xu, H. Wu, R. Dong, R. Liu, H. Zhu, Core-shell Co-MOF-74@ Mn-MOF-74 catalysts with Controllable shell thickness and their enhanced catalytic activity for toluene oxidation. J. Solid State Chem. 294, 121803 (2021)

    Article  CAS  Google Scholar 

  91. B. Wang, P. Wang, L.H. Xie, R.B. Lin, J. Lv, J.R. Li, B. Chen, A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nat. Commun. 10(1), 3861 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  92. Y. Liu, J. Li, M. Chen, X. Chen, N. Zheng, Palladium-based nanomaterials for cancer imaging and therapy. Theranostics 10(22), 10057 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. M. Pamei, A. Puzari, Luminescent transition metal–organic frameworks: an emerging sensor for detecting biologically essential metal ions. Nano-Str. Nano-Objects 19, 100364 (2019)

    Article  CAS  Google Scholar 

  94. Y. Feng, Y. Xu, S. Liu, D. Wu, Z. Su, G. Chen, G. Li, Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord. Chem. Rev. 459, 214414 (2022)

    Article  CAS  Google Scholar 

  95. W. Xu, Y. Wu, L. Jiao, W. Gu, D. Du, Y. Lin, C. Zhu, Engineering metal-organic framework-based nanozymes for enhanced biosensing. Curr. Anal. Chem. 18(6), 739–752 (2022)

    Article  Google Scholar 

  96. J. Liu, J. Liang, J. Xue, K. Liang, Metal–organic frameworks as a versatile materials platform for unlocking new potentials in biocatalysis. Small 17(32), 2100300 (2021)

    Article  CAS  Google Scholar 

  97. X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, H.C. Zhou, Enzyme–MOF (metal–organic framework) composites. Chem. Soc. Rev. 46(11), 3386–3401 (2017)

    Article  CAS  PubMed  Google Scholar 

  98. Nag, S., & Batra, S. (2011). Applications of allylamines for the syntheses of aza-heterocycles.

  99. Y. Lu, Z. Sun, M. Huo, Fabrication of a micellar heteropolyacid with Lewis-Brønsted acid sites and application for the production of 5-hydroxymethylfurfural from saccharides in water. RSC Adv. 5(39), 30869–30876 (2015)

    Article  CAS  Google Scholar 

  100. F. Rudroff, M.D. Mihovilovic, H. Gröger, R. Snajdrova, H. Iding, U.T. Bornscheuer, Opportunities and challenges for combining chemo-and biocatalysis. Nat. Catal. 1(1), 12–22 (2018)

    Article  Google Scholar 

  101. X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater Sci. 88, 1–48 (2017)

    Article  Google Scholar 

  102. L.J. Murray, M. Dincă, J.R. Long, Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38(5), 1294–1314 (2009)

    Article  CAS  PubMed  Google Scholar 

  103. M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev. 112(2), 782–835 (2012)

    Article  CAS  PubMed  Google Scholar 

  104. W.G. Cui, G.Y. Zhang, T.L. Hu, X.H. Bu, Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coord. Chem. Rev. 387, 79–120 (2019)

    Article  CAS  Google Scholar 

  105. A. Ahmed, Y. Liu, J. Purewal, L.D. Tran, A.G. Wong-Foy, M. Veenstra, D.J. Siegel, Balancing gravimetric and volumetric hydrogen density in MOFs. Energy Environ. Sci. 10(11), 2459–2471 (2017)

    Article  CAS  Google Scholar 

  106. K.S. Lin, A.K. Adhikari, C.N. Ku, C.L. Chiang, H. Kuo, Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. Int. J. Hydrogen Energy 37(18), 13865–13871 (2012)

    Article  CAS  Google Scholar 

  107. C. Weidenthaler, M. Felderhoff, Solid-state hydrogen storage for mobile applications: Quo Vadis? Energy Environ. Sci. 4(7), 2495–2502 (2011)

    Article  CAS  Google Scholar 

  108. S.H. Yeon, S. Osswald, Y. Gogotsi, J.P. Singer, J.M. Simmons, J.E. Fischer, Á. Linares-Solano, Enhanced methane storage of chemically and physically activated carbide-derived carbon. J. Power Sour. 191(2), 560–567 (2009)

    Article  CAS  Google Scholar 

  109. A.K. Adhikari, K.S. Lin, Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74 (Ni, Co) by doping palladium-containing activated carbon. Chem. Eng. J. 284, 1348–1360 (2016)

    Article  CAS  Google Scholar 

  110. Y. Lin, C. Kong, Q. Zhang, L. Chen, Metal-organic frameworks for carbon dioxide capture and methane storage. Adv. Energy Mater. 7(4), 1601296 (2017)

    Article  Google Scholar 

  111. Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal–organic frameworks. Chem. Soc. Rev. 43(16), 5657–5678 (2014)

    Article  CAS  PubMed  Google Scholar 

  112. B. Li, H.M. Wen, W. Zhou, J.Q. Xu, B. Chen, Porous metal-organic frameworks: promising materials for methane storage. Chem 1(4), 557–580 (2016)

    Article  CAS  Google Scholar 

  113. M.S. Alivand, N.H.M.H. Tehrani, M. Shafiei-Alavijeh, A. Rashidi, M. Kooti, A. Pourreza, S. Fakhraie, Synthesis of a modified HF-free MIL-101 (Cr) nanoadsorbent with enhanced H2S/CH4, CO2/CH4, and CO2/N2 selectivity. J. Environ. Chem. Eng. 7(2), 102946 (2019)

    Article  Google Scholar 

  114. J.W. Ye, H.L. Zhou, S.Y. Liu, X.N. Cheng, R.B. Lin, X.L. Qi, X.M. Chen, Encapsulating pyrene in a metal–organic zeolite for optical sensing of molecular oxygen. Chem. Mater. 27(24), 8255–8260 (2015)

    Article  CAS  Google Scholar 

  115. A. Paul, I.K. Banga, S. Muthukumar, S. Prasad, Engineering the ZIF-8 Pore for Electrochemical Sensor Applications─ A Mini Review. ACS Omega 7(31), 26993–27003 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. M.A. Rodrigues, J. de Souza Ribeiro, E. de Souza Costa, J.L. de Miranda, H.C. Ferraz, Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Sep. Purif. Technol. 192, 491–500 (2018)

    Article  CAS  Google Scholar 

  117. Y. Xie, C. Chen, X. Ren, X. Tan, G. Song, D. Chen, T. Hayat, Coupling g-C3N4 nanosheets with metal-organic frameworks as 2D/3D composite for the synergetic removal of uranyl ions from aqueous solution. J. Colloid Interface Sci. 550, 117–127 (2019)

    Article  CAS  PubMed  Google Scholar 

  118. A. Imtiaz, M.H.D. Othman, A. Jilani, I.U. Khan, R. Kamaludin, O. Samuel, ZIF-filler incorporated mixed matrix membranes (MMMs) for efficient gas separation: a review. J. Environ. Chem. Eng. (2022). https://doi.org/10.1016/j.jece.2022.108541

    Article  Google Scholar 

  119. S.H. Hua, T.T. Bui, D.C. Nguyen, Y.B. Cho, H. Chun, Y.S. Kim, Enhanced colorimetric detection of hydrogen using PdO-decorated ZnO covered with a metal-organic framework membrane. Int. J. Hydrogen Energy 47(93), 39687–39699 (2022)

    Article  CAS  Google Scholar 

  120. M.J.C. Ordonez, K.J. Balkus Jr., J.P. Ferraris, I.H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 361(1–2), 28–37 (2010)

    Article  CAS  Google Scholar 

  121. M. Loloei, S. Kaliaguine, D. Rodrigue, CO2-Selective mixed matrix membranes of bimetallic Zn/Co-ZIF vs ZIF-8 and ZIF-67. Separation and Purification Technol 296, 121391 (2022)

    Article  CAS  Google Scholar 

  122. F.P. Kinik, C. Altintas, V. Balci, B. Koyuturk, A. Uzun, S. Keskin, [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: elucidation of interactions and their consequences on performance. ACS Appl. Mater. Interfaces. 8(45), 30992–31005 (2016)

    Article  CAS  PubMed  Google Scholar 

  123. M. Usman, N. Iqbal, T. Noor, N. Zaman, A. Asghar, M.M. Abdelnaby, A. Helal, Advanced strategies in metal-organic frameworks for CO2 Capture and Separation. Chem. Rec. 22(7), e202100230 (2022)

    Article  CAS  PubMed  Google Scholar 

  124. L. Wang, W. Sun, S. Duttwyler, Y. Zhang, Efficient adsorption separation of methane from CO2 and C2–C3 hydrocarbons in a microporous closo-dodecaborate [B12H12] 2-pillared metal–organic framework. J. Solid State Chem. 299, 122167 (2021)

    Article  CAS  Google Scholar 

  125. W. da Silva Freitas, B. Mecheri, C.L. Vecchio, I. Gatto, V. Baglio, V.C. Ficca, A. D’Epifanio, Metal-organic-framework-derived electrocatalysts for alkaline polymer electrolyte fuel cells. J. Power Sour. 550, 232135 (2022)

    Article  Google Scholar 

  126. T. Wu, X. Feng, S.K. Elsaidi, P.K. Thallapally, M.A. Carreon, Zeolitic imidazolate framework-8 (ZIF-8) membranes for Kr/Xe separation. Ind. Eng. Chem. Res. 56(6), 1682–1686 (2017)

    Article  CAS  Google Scholar 

  127. F.M. Benedetti, M.G. De Angelis, M. Degli Esposti, P. Fabbri, A. Masili, A. Orsini, A. Pettinau, Enhancing the separation performance of glassy PPO with the addition of a molecular sieve (ZIF-8): gas transport at various temperatures. Membranes 10(4), 56 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. M. Zhao, Y. Ban, Z. Chang, Y. Zhou, K. Yang, Y. Wang, W. Yang, Pyrazine-interior-embodied MOF-74 for selective CO2 adsorption. AIChE J 68(3), e17528 (2022)

    Article  CAS  Google Scholar 

  129. H. Naveed, H. Shaheen, R. Kumari, R. Lakra, A.L. Khan, S. Basu, Sustainable metal-organic framework technologies for CO2 capture, in Sustainable carbon capture. (CRC Press, Boca Raton, 2022), pp.161–183

    Chapter  Google Scholar 

  130. I.R. Baxendale, R.D. Braatz, B.K. Hodnett, K.F. Jensen, M.D. Johnson, P. Sharratt, A.J. Florence, Achieving continuous manufacturing: Technologies and approaches for synthesis, workup, and isolation of drug substance May 20–21, 2014 Continuous Manufacturing Symposium. J. Pharmaceutical Sci. 104(3), 781–791 (2015)

    Article  CAS  Google Scholar 

  131. M.S. Choi, H.G. Na, G.S. Shim, J.H. Cho, M.Y. Kim, S.I. Kim, K.H. Lee, Simple and scalable synthesis of urchin-like ZnO nanoparticles via a microwave-assisted drying process. Ceram. Int. 47(10), 14621–14629 (2021)

    Article  CAS  Google Scholar 

  132. D. Zhao, D. Yuan, D. Sun, H.C. Zhou, Stabilization of metal− organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. J. Am. Chem. Soc. 131(26), 9186–9188 (2009)

    Article  CAS  PubMed  Google Scholar 

  133. K.W. Nam, S.M. Bak, E. Hu, X. Yu, Y. Zhou, X. Wang, X.Q. Yang, Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 23(8), 1047–1063 (2013)

    Article  CAS  Google Scholar 

  134. H. Wei, S. Chai, N. Hu, Z. Yang, L. Wei, L. Wang, The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO 2 capacity. Chem. Commun. 51(61), 12178–12181 (2015)

    Article  CAS  Google Scholar 

  135. L. Li, Q. Yang, S. Chen, X. Hou, B. Liu, J. Lu, H.L. Jiang, Boosting selective oxidation of cyclohexane over a metal–organic framework by hydrophobicity engineering of pore walls. Chem. Commun. 53(72), 10026–10029 (2017)

    Article  CAS  Google Scholar 

  136. H. Zhang, W. Zhao, M. Zou, Y. Wang, Y. Chen, L. Xu, A. Cao, 3D, mutually embedded MOF@ carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 8(19), 1800013 (2018)

    Article  Google Scholar 

  137. Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro, K. Kataoka, Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug. Chem. 16(1), 122–130 (2005)

    Article  CAS  PubMed  Google Scholar 

  138. J.D. Bhaliya, V.R. Shah, G. Patel, K. Deshmukh, Recent advances of MOF-based nanoarchitectonics for chemiresistive gas sensors. J. Inorg. Organometallic Polym. Mater (2023). https://doi.org/10.1007/s10904-023-02597-w

    Article  Google Scholar 

  139. M. Najafi, R. Rahimi, Synthesis of novel Zr-MOF/cloisite-30B nanocomposite for anionic and cationic dye adsorption: optimization by design-expert, kinetic, thermodynamic, and adsorption study. J. Inorg. Organomet. Polym Mater. 33(1), 138–150 (2023)

    Article  CAS  Google Scholar 

  140. F. Zhang, X. Zou, X. Gao, S. Fan, F. Sun, H. Ren, G. Zhu, Hydrogen selective NH2-MIL-53 (Al) MOF membranes with high permeability. Adv. Func. Mater. 22(17), 3583–3590 (2012)

    Article  CAS  Google Scholar 

  141. F.X.L. i Xamena, A. Abad, A. Corma, H. Garcia, MOFs as catalysts: activity, reusability and shape-selectivity of a Pd-containing MOF. J. Catal. 250(2), 294–298 (2007)

    Article  Google Scholar 

  142. A.M. Matloob, D.R. Abd El-Hafiz, L. Saad, S. Mikhail, Hybrid Nanoarchitectonics with Cr, Fe-MOF/graphene nanocomposite for removal of organic sulfur compounds from diesel fuel. J. Inorg. Organomet. Polym Mater. 33(1), 254–265 (2023)

    Article  CAS  Google Scholar 

  143. D.Y. Heo, H.H. Do, S.H. Ahn, S.Y. Kim, Metal-organic framework materials for perovskite solar cells. Polymers 12(9), 2061 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. P.S. Sharanyakanth, M. Radhakrishnan, Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: a critical review. Trends Food Sci. Technol. 104, 102–116 (2020)

    Article  CAS  Google Scholar 

  145. W.T. Koo, J.S. Jang, I.D. Kim, Metal-organic frameworks for chemiresistive sensors. Chem 5(8), 1938–1963 (2019)

    Article  CAS  Google Scholar 

  146. E. Whelan, F.W. Steuber, T. Gunnlaugsson, W. Schmitt, Tuning photoactive metal–organic frameworks for luminescence and photocatalytic applications. Coord. Chem. Rev. 437, 213757 (2021)

    Article  CAS  Google Scholar 

  147. J.S. Pandey, N. von Solms, Metal-organic frameworks and gas hydrate synergy: a pandora’s box of unanswered questions and revelations. Energies 16(1), 111 (2023)

    Article  CAS  Google Scholar 

  148. M. Ahmadi, S.M. Ayyoubzadeh, F. Ghorbani-Bidkorbeh, S. Shahhosseini, S. Dadashzadeh, E. Asadian, S. Siavashy, An investigation of affecting factors on MOF characteristics for biomedical applications: a systematic review. Heliyon 7(4), e06914 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. M.Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. Garcia, Mixed-metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design. Angew. Chem. 131(43), 15330–15347 (2019)

    Article  Google Scholar 

  150. Y. Liu, J.F. Eubank, A.J. Cairns, J. Eckert, V.C. Kravtsov, R. Luebke, M. Eddaoudi, Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew. Chem. 119(18), 3342–3347 (2007)

    Article  Google Scholar 

  151. T. Wang, L. Gao, J. Hou, S.J. Herou, J.T. Griffiths, W. Li, S.K. Smoukov, Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat. Commun. 10(1), 1340 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  152. S. Proch, J. Herrmannsdörfer, R. Kempe, C. Kern, A. Jess, L. Seyfarth, J. Senker, Pt@ MOF-177: synthesis, room-temperature hydrogen storage and oxidation catalysis. Chem. A Eur. J. 14(27), 8204–8212 (2008)

    Article  CAS  Google Scholar 

  153. T.T. Dang, Y. Zhu, S.C. Ghosh, A. Chen, C.L. Chai, A.M. Seayad, Atmospheric pressure aminocarbonylation of aryl iodides using palladium nanoparticles supported on MOF-5. Chem. Commun. 48(12), 1805–1807 (2012)

    Article  CAS  Google Scholar 

  154. G.H. Albuquerque, R.C. Fitzmorris, M. Ahmadi, N. Wannenmacher, P.K. Thallapally, B.P. McGrail, G.S. Herman, Gas–liquid segmented flow microwave-assisted synthesis of MOF-74 (Ni) under moderate pressures. CrystEngComm 17(29), 5502–5510 (2015)

    Article  CAS  Google Scholar 

  155. J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang, B. Han, MOF-5/n-Bu 4 NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO 2 under mild conditions. Green Chem. 11(7), 1031–1036 (2009)

    Article  CAS  Google Scholar 

  156. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2012)

    Article  CAS  PubMed  Google Scholar 

  157. C. Wang, X. Li, W. Yang, Y. Xu, H. Pang, Solvent regulation strategy of Co-MOF-74 microflower for supercapacitors. Chin. Chem. Lett. 32(9), 2909–2913 (2021)

    Article  CAS  Google Scholar 

  158. M.A. Mohamud, A.B. Yurtcan, Zeolotic imidazolate frameworks (ZIFs) derived porous carbon: a review from crystal growth & green synthesis to oxygen reduction reaction activity. Int. J. Hydrogen Energy 46(68), 33782–33800 (2021)

    Article  CAS  Google Scholar 

  159. W. Bode, I. Mayr, U. Baumann, R. Huber, S.R. Stone, J. Hofsteenge, The refined 1.9 a crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 8(11), 3467–3475 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Y.G. Srinivasulu, N. Goswami, Q. Yao, J. Xie, High-yield synthesis of AIE-type Au22 (SG) 18 nanoclusters through precursor engineering and its pH-dependent size transformation. J. Phys. Chem. C 125(7), 4066–4076 (2021)

    Article  CAS  Google Scholar 

  161. C.R. Marshall, E.E. Timmel, S.A. Staudhammer, C.K. Brozek, Experimental evidence for a general model of modulated MOF nanoparticle growth. Chem. Sci. 11(42), 11539–11547 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. S. Dai, C. Simms, I. Dovgaliuk, G. Patriarche, A. Tissot, T.N. Parac-Vogt, C. Serre, Monodispersed MOF-808 nanocrystals synthesized via a scalable room-temperature approach for efficient heterogeneous peptide bond hydrolysis. Chem. Mater. 33(17), 7057–7066 (2021)

    Article  CAS  Google Scholar 

  163. T.C. Lin, C. Cao, M. Sokoluk, L. Jiang, X. Wang, J.M. Schoenung, X. Li, Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat. Commun. 10(1), 4124 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  164. J.C. Yu, S. Badgujar, E.D. Jung, V.K. Singh, D.W. Kim, J. Gierschner, M.H. Song, Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive. Adv. Mater. 31(6), 1805554 (2019)

    Google Scholar 

  165. P. Hirschle, T. Preiß, F. Auras, A. Pick, J. Völkner, D. Valdepérez, S. Wuttke, Exploration of MOF nanoparticle sizes using various physical characterization methods–is what you measure what you get. CrystEngComm 18(23), 4359–4368 (2016)

    Article  CAS  Google Scholar 

  166. H. Wang, Y. Liu, J. Li, Designer metal–organic frameworks for size-exclusion-based hydrocarbon separations: progress and challenges. Adv. Mater. 32(44), 2002603 (2020)

    Article  CAS  Google Scholar 

  167. Y. Xiong, F. Ye, C. Zhang, S. Shen, L. Su, S. Zhao, Synthesis of magnetic porous γ-Fe 2 O 3/C@ HKUST-1 composites for efficient removal of dyes and heavy metal ions from aqueous solution. RSC Adv. 5(7), 5164–5172 (2015)

    Article  CAS  Google Scholar 

  168. S.E. Bambalaza, H.W. Langmi, R. Mokaya, N.M. Musyoka, L.E. Khotseng, Experimental demonstration of dynamic temperature-dependent behavior of UiO-66 metal–organic framework: compaction of hydroxylated and dehydroxylated forms of UiO-66 for high-pressure hydrogen storage. ACS Appl. Mater. Interfaces. 12(22), 24883–24894 (2020)

    Article  CAS  PubMed  Google Scholar 

  169. T. Kajiwara, M. Higuchi, D. Watanabe, H. Higashimura, T. Yamada, H. Kitagawa, A systematic study on the stability of porous coordination polymers against ammonia. Chem. A Eur. J. 20(47), 15611–15617 (2014)

    Article  CAS  Google Scholar 

  170. Y. Liu, J.H. Her, A. Dailly, A.J. Ramirez-Cuesta, D.A. Neumann, C.M. Brown, Reversible structural transition in MIL-53 with large temperature hysteresis. J. Am. Chem. Soc. 130(35), 11813–11818 (2008)

    Article  CAS  PubMed  Google Scholar 

  171. S.J. Garibay, S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem. Commun. 46(41), 7700–7702 (2010)

    Article  CAS  Google Scholar 

  172. Z. Hu, T. Kundu, Y. Wang, Y. Sun, K. Zeng, D. Zhao, Modulated hydrothermal synthesis of highly stable MOF-808 (Hf) for methane storage. ACS Sustain. Chem. Eng. 8(46), 17042–17053 (2020)

    Article  CAS  Google Scholar 

  173. Altınsoy, B. (2015). Preparation, Characterization, and Investigation of H 2 Storage Capacities of Pruussian Blue Analogues (Doctoral dissertation, Bilkent Universitesi (Turkey)).

  174. N. Campagnol, T. Van Assche, T. Boudewijns, J. Denayer, K. Binnemans, D. De Vos, J. Fransaer, High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies. J. Mater. Chem. A 1(19), 5827–5830 (2013)

    Article  CAS  Google Scholar 

  175. Z. Jiang, Y. Li, Facile synthesis of magnetic hybrid Fe3O4/MIL-101 via heterogeneous coprecipitation assembly for efficient adsorption of anionic dyes. J. Taiwan Inst. Chem. Eng. 59, 373–379 (2016)

    Article  CAS  Google Scholar 

  176. X. Wang et al., Design and preparation of Zr-based MOFs with high surface area. Chem. Mater. 20(6), 1996–2000 (2008)

    Google Scholar 

  177. S. Wuttke et al., Copper-based MOFs as highly active catalysts for CO oxidation. Angew. Chem. Int. Ed. 47(9), 1678–1682 (2008)

    Google Scholar 

  178. X. Zhao et al., Gas storage in porous metal-organic frameworks for clean energy applications. Chem. Soc. Rev. 38(3), 908–917 (2009)

    Google Scholar 

  179. S.S.-Y. Chui et al., A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(5405), 1148–1150 (1999)

    Article  CAS  PubMed  Google Scholar 

  180. A.H. Chughtai et al., Synthesis and applications of metal-organic frameworks—a review. RSC Adv. 5(33), 25408–25450 (2015)

    Google Scholar 

  181. D. Zhao et al., Controllable synthesis of MOF-5 and related rare-earth metal-organic frameworks. Inorg. Chem. 47(16), 7420–7426 (2008)

    Google Scholar 

  182. L.E. Kreno et al., Metal-organic framework materials as chemical sensors. Chem. Rev. 112(2), 1105–1125 (2012)

    Article  CAS  PubMed  Google Scholar 

  183. H. Wu et al., Exceptional mechanical stability of highly porous zirconium-based metal-organic frameworks. J. Am. Chem. Soc. 135(42), 15934–15937 (2013)

    Google Scholar 

  184. X. Liu et al., Highly efficient catalysis of C-C bond formation using copper-based MOFs: a comparative study. Chem. Commun. 47(38), 10667–10669 (2011)

    Google Scholar 

  185. A. Dhakshinamoorthy et al., Metal–organic frameworks as efficient heterogeneous catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Chem. Commun. 48(90), 11154–11156 (2012)

    Google Scholar 

  186. Z. Hu et al., Design and synthesis of metal-organic frameworks for CO2 capture and gas separation. Prog. Chem. 28(2), 151–162 (2016)

    Google Scholar 

  187. Y.-S. Bae et al., Adsorption and separation of CO2 and N2 by a flexible metal-organic framework. J. Am. Chem. Soc. 123(47), 11482–11483 (2001)

    Google Scholar 

  188. A.R. Millward et al., Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127(51), 17998–17999 (2005)

    Article  CAS  PubMed  Google Scholar 

  189. J.A. Mason et al., Evaluating metal–organic frameworks for natural gas storage. Chem. Sci. 5(1), 32–51 (2014)

    Article  CAS  Google Scholar 

  190. Y.-B. Zhang et al., Stable metal-organic frameworks: design, synthesis, and applications. Adv. Mater. 28(30), 6073–6103 (2016)

    Google Scholar 

  191. P. Horcajada et al., Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9(2), 172–178 (2010)

    Article  CAS  PubMed  Google Scholar 

  192. Q.-L. Zhu et al., Carbon capture by metal-organic frameworks. Nat. Commun. 7, 12097 (2016)

    Google Scholar 

  193. H. Li et al., An interweaving MOF with high mechanical stability: synthesis, structure and mechanical properties. Chem. Commun. 47(20), 5796–5798 (2011)

    Google Scholar 

  194. M. Pander, M. Janeta, W. Bury, Quest for an efficient 2-in-1 MOF-based catalytic system for cycloaddition of CO2 to epoxides under mild conditions. ACS Appl. Mater. Interfaces 13(7), 8344–8352 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Q. Wang, D. Astruc, State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 120(2), 1438–1511 (2019)

    Article  PubMed  Google Scholar 

  196. M. Díaz-García, M. Sánchez-Sánchez, Synthesis and characterization of a new Cd-based metal-organic framework isostructural with MOF-74/CPO-27 materials. Microporous Mesoporous Mater. 190, 248–254 (2014)

    Article  Google Scholar 

  197. Y. Hu, H. Zhou, L. Dai, D. Liu, S. Al-Zuhair, W. Du, Lipase immobilization on macroporous ZIF-8 for enhanced enzymatic biodiesel production. ACS Omega 6(3), 2143–2148 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. C. Chen, F. Wang, Q. Li, Y. Wang, J. Ma, Embedding of SO3H-functionalized ionic liquids in mesoporous MIL-101 (Cr) through polyoxometalate bridging: A robust heterogeneous catalyst for biodiesel production. Colloids Surf., A 648, 129432 (2022)

    Article  CAS  Google Scholar 

  199. J. Chen, B. Sun, C. Sun, P. Zhang, W. Xu, Y. Liu, K. Tang, Immobilization of lipase AYS on UiO-66-NH2 metal-organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution. Separation Purification Technol. 251, 117398 (2020)

    Article  CAS  Google Scholar 

  200. G. Ciofani, S. Danti, D. D’Alessandro, L. Ricotti, S. Moscato, G. Bertoni, A. Falqui S. Berrettini, M. Petrini, V. Mattoli, A. Menciassi, Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS nano. 4(10), 6267–6277 (2010)

    Article  CAS  PubMed  Google Scholar 

  201. L. Wu, B. M. Zee, Y. Wang, B. A. Garcia, & Y. Dou, The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol cell. 43(1), 132–144 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  202. N. W. H Mason, F. de Bello, J. Doležal, & J. Lepš, Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. J Ecol. 99(3), 788–796 (2011)

    Article  Google Scholar 

  203. Z. R Herm, J. A Swisher, B. Smit, R. Krishna, J. R Long, Metal-Organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J. Am. Chem. Soc. 133, 5664–5667 (2011)

    Article  Google Scholar 

  204. P. C Chen, G. Shen, Y. Shi, H. Chen, & C. Zhou, Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS nano, 4(8), 4403–4411 (2010)

    Article  CAS  PubMed  Google Scholar 

  205. Q. Li, W. Zhang, O. S Miljanić, C. H. Sue, Y. L. Zhao, L. Liu, C. B. Knobler, J. F. Stoddart & O. M. Yaghi, Docking in metal-organic frameworks. Science, 325(5942), 855–859 (2009)

    Article  CAS  PubMed  Google Scholar 

  206. M. Savage, S. Yang, M. Suyetin, E. Bichoutskaia, W. Lewis, A. J. Blake, S. A. Barnett, & M. Schröder, A novel bismuth‐Based Metal–Organic Framework for High Volumetric Methane and Carbon Dioxide Adsorption. Chemistry–A European Journal, 20(26), 8024–8029 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore for providing the facility support to complete this research work.

Funding

The authors have not claimed any funding for this study. All data are interpreted in this paper and have not been discussed in any of the existing journals.

Author information

Authors and Affiliations

Authors

Contributions

AFS: Conceptualization, HJP: Drafting, JM, JS: Visualization, MK: Software, MB: Review, KD: Supervision.

Corresponding author

Correspondence to A. Felix Sahayaraj.

Ethics declarations

Competing interest

The authors do not have any conflicts of interest regarding the publication of this paper in this journal.

Ethical approval

Ethical approval was not applicable for this article.

Consent for publication

Ethics approval was not applicable for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felix Sahayaraj, A., Joy Prabu, H., Maniraj, J. et al. Metal–Organic Frameworks (MOFs): The Next Generation of Materials for Catalysis, Gas Storage, and Separation. J Inorg Organomet Polym 33, 1757–1781 (2023). https://doi.org/10.1007/s10904-023-02657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02657-1

Keywords

Navigation