Skip to main content
Log in

Hybrid Alginate/TiO2/Ag Bio-nanocomposite Beads for Catalytic Hydrogenation of 2-Nitrophenol

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The current study emphases on formulating active hybrid bio-nanocomposite material based on biopolymer alginate embedded with TiO2 and silver nanoparticles. A fixed amount of TiO2 nanodispersion was mixed with alginate solution then the Alginate/TiO2 bio-nanocomposite beads obtained by ionic crosslinking using CaCl2 solution. The prepared Alginate/TiO2 beads in the wet state loaded with Ag+ ions by adsorption technique then the Alginate/TiO2 beads loaded with silver ions reduced to silver nanoparticles (Ag NPs) through irradiation technique. The bio-nanocomposite beads Alginate/TiO2 and Alginate/TiO2–Ag fully studied to assess the nanostructure morphology of embedded TiO2 and Ag nanoparticles: size and shape. The catalytic ability of the prepared nanocomposite beads as a catalyst inspected by studying its ability on the reduction of 2- Nitrophenol (2-NP) to 2-Aminophenol (2-AP) under various factors including initial concentration of 2-nitrophenol, time of reduction process, content of reducing agent and amount of catalyst. It is found that the embedding of Ag nanoparticles has a great impact where the catalytic hydrogenation of 2-NP to 2-AP reached to 98% in case of using Alginate/TiO2–Ag compared with 76% in case of applying hybrid Alginate/TiO2 bio-nanocomposite as a catalyst. Also, the prepared hybrid bio-nanocomposite beads has a high reduction ability for 2-nitrophenol up to 0.05 M concentration. The optimum weight of catalyst was 0.4 g which accomplished nearly 98% reduction percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Zhang, J.M. Suh, T.H. Lee et al., Copper oxide—graphene oxide nanocomposite : efficient catalyst for hydrogenation of nitroaromatics in water. Nano Converg. (2019). https://doi.org/10.1186/s40580-019-0176-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. M. Shokouhimehr, S.M. Yek, Palladium nanocatalysts on hydroxyapatite: green oxidation of alcohols and reduction of nitroarenes in water. Appl. Sci. (2019). https://doi.org/10.3390/app9194183

    Article  Google Scholar 

  3. K. Zhang, J.M. Suh, J. Choi et al., Recent advances in the nanocatalyst-assisted NaBH4 reduction of nitroaromatics in water. ACS Omega 4, 483–495 (2029). https://doi.org/10.1021/acsomega.8b03051

    Article  CAS  Google Scholar 

  4. F. Anjum, S. Gul, M.I. Khan, M.A. Khan, Efficient synthesis of palladium nanoparticles using guar gum as stabilizer and their applications as catalyst in reduction reactions and degradation of azo dyes. Green Process. Synth. 9, 63–76 (2020). https://doi.org/10.1515/gps-2020-0008

    Article  Google Scholar 

  5. M. Zhao, K. Yuan, Y. Wang et al., Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nat. Publ. Gr. 539, 76–80 (2026). https://doi.org/10.1038/nature19763

    Article  CAS  Google Scholar 

  6. H. Liu, X. Liu, Y. Li et al., Hollow PtNi alloy nanospheres with enhanced activity and methanol tolerance for the oxygen reduction reaction. Nano Res. 9(11), 3494–3503 (2016). https://doi.org/10.1007/s12274-016-1226-3

    Article  CAS  Google Scholar 

  7. Y. Gu, Y. Jiao, X. Zhou et al., Strongly coupled Ag/TiO2 heterojunctions for effective and stable photothermal catalytic reduction of 4-nitrophenol. Nano Res. 11(1), 126–141 (2018). https://doi.org/10.1007/s12274-017-1612-5

    Article  CAS  Google Scholar 

  8. H. Karimi-Maleh, B.G. Kumar, S. Rajendran et al., Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq. 2020(314), 113588 (2020). https://doi.org/10.1016/j.molliq.2020.113588

    Article  CAS  Google Scholar 

  9. M.M. Ba-abbad, A.A.H. Kadhum, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 7, 4871–4888 (2012)

    Article  CAS  Google Scholar 

  10. A. Ziashahabi, M. Prato, Z. Dang et al., The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark. Sci. Rep. 9, 1–12 (2019). https://doi.org/10.1038/s41598-019-48075-7

    Article  CAS  Google Scholar 

  11. S. Aftab, N.K. Bakirhan, O. Esim et al., NH2-fMWCNT-titanium dioxide nanocomposite based electrochemical sensor for the voltammetric assay of antibiotic drug nadifloxacin and its in vitro permeation study. J. Electroanal. Chem. 859, 113857 (2020). https://doi.org/10.1016/j.jelechem.2020.113857

    Article  CAS  Google Scholar 

  12. H.M. Alshammari, Synthesis of palladium and copper nanoparticles supported on TiO2 for oxidation solvent-free aerobic oxidation of benzyl alcohol. Processes (2021). https://doi.org/10.3390/pr9091590

    Article  Google Scholar 

  13. S. Moqadam, M. Salami-Kalajahi, M. Mahdavian, Synthesis and characterization of sunflower oil-based polysulfide polymer/cloisite 30B nanocomposites. Iran J. Chem. Chem. Eng. 37, 185–192 (2018)

    CAS  Google Scholar 

  14. M.M. Khan, S. Kalathil, J. Lee, M.H. Cho, Enhancement in the photocatalytic activity of Au@TiO2 nanocomposites by pretreatment of TiO2 with UV light. Bull. Korean Chem. Soc. 33, 1753–1758 (2012). https://doi.org/10.5012/bkcs.2012.33.5.1753

    Article  CAS  Google Scholar 

  15. N. Sahu, K.M. Parida, Photocatalytic Activity of Au/TiO2 Nanocomposite for Azo dyes degradation. Kinet. Catal. 53(2), 197–205 (2012). https://doi.org/10.1134/S0023158412020097

    Article  CAS  Google Scholar 

  16. P. Saikia, A.T. Miah, P.P. Das, Highly efficient catalytic reductive degradation of various organic dyes by Au/CeO2-TiO2nano-hybrid. J. Chem. Sci. 2017(129), 81–93 (2017). https://doi.org/10.1007/s12039-016-1203-0

    Article  CAS  Google Scholar 

  17. B.B. Tripathy, M. Behera, H. Rath et al., Evolution of microstructure and optical properties of TiO2/Au nanocomposite. Indian J. Pure Appl. Phys. 57, 95–100 (2019)

    Google Scholar 

  18. M.A. Gondal, S.G. Rashid, M.A. Dastageer et al., Sol-gel synthesis of Au/Cu-TiO2 nanocomposite and their morphological and optical properties. J. IEEE Photon. (2013). https://doi.org/10.1109/JPHOT.2013.2262674

    Article  Google Scholar 

  19. P. Martins, S. Kappert, H.N. Le et al., Enhanced photocatalytic activity of au/TiO2 nanoparticles against ciprofloxacin. Catalysts (2020). https://doi.org/10.3390/catal10020234

    Article  Google Scholar 

  20. A. Biswas, A. Corani, A. Kathiravan et al., Control of the size and shape of TiO2 nanoparticles in restricted media. Nanotechnology (2013). https://doi.org/10.1088/0957-4484/24/19/195601

    Article  PubMed  Google Scholar 

  21. L. Kaufner, R. Cartier, R. Wüstneck et al., Poly(ethylene oxide)-block-poly(glutamic acid) coated maghemite nanoparticles: In vitro characterization and in vivo behaviour. Nanotechnology (2007). https://doi.org/10.1088/0957-4484/18/11/115710

    Article  Google Scholar 

  22. H. Fissan, S. Ristig, H. Kaminski et al., Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal. Methods 6, 7324–7334 (2014). https://doi.org/10.1039/c4ay01203h

    Article  CAS  Google Scholar 

  23. T.G.F. Souza, V.S.T. Ciminelli, N.D.S. Mohallem, A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J. Phys. Conf. Ser. (2016). https://doi.org/10.1088/1742-6596/733/1/012039

    Article  Google Scholar 

  24. C. Kästner, A.F. Thünemann, Au nanoparticles decorated on activated coke via a facile preparation for efficient catalytic reduction of nitrophenols and azo dyes. Langmuir 32, 7383–7391 (2016). https://doi.org/10.1021/acs.langmuir.6b01477

    Article  CAS  PubMed  Google Scholar 

  25. G. Shimoga, R.R. Palem, S.H. Lee, S.Y. Kim, Catalytic degradability of p-nitrophenol using ecofriendly silver nanoparticles. Metals (Basel) 10, 1–20 (2020). https://doi.org/10.3390/met10121661

    Article  CAS  Google Scholar 

  26. J. Kaur, J. Singh, M. Rawat, An efficient and blistering reduction of 4-nitrophenol by green synthesized silver nanoparticles. SN Appl. Sci. 1, 1–6 (2019). https://doi.org/10.1007/s42452-019-1088-x

    Article  CAS  Google Scholar 

  27. Y. Fu, P. Xu, D. Huang et al., Au nanoparticles decorated on activated coke via a facile preparation for efficient catalytic reduction of nitrophenols and azo dyes. Appl. Surf. Sci. 473, 578–588 (2019). https://doi.org/10.1016/j.apsusc.2018.12.207

    Article  CAS  Google Scholar 

  28. S. Mehmood, N.K. Janjua, F. Saira, H. Fenniri, AuCu@Pt nanoalloys for catalytic application in reduction of 4-nitrophenol. J. Spectrosc. (2016). https://doi.org/10.1155/2016/6210794

    Article  Google Scholar 

  29. C. Mariia, M. Natalia, Z. Vladimir, S. Mikhail, F.L. Leonarda, M. Grigory, Room-temperature nitrophenol reduction over Ag–CeO2 catalysts: the role of catalyst preparation method. Catalysts 10, 580 (2020). https://doi.org/10.3390/catal10050580

    Article  CAS  Google Scholar 

  30. K.G. Vinod, A. Necip, L.Y. Mehmet, U. Zafer, U. Lokman, A novel magnetic Fe@Au coreeshell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 48, 210–217 (2014)

    Article  Google Scholar 

  31. G.B. Neus et al., Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Sci. Rep. 9, 18776 (2019). https://doi.org/10.1038/s41598-019-55105-x

    Article  CAS  Google Scholar 

  32. S.R. Thawarkar, B. Thombare, B.S. Munde, N.D. Khupse, Kinetic investigation for the catalytic reduction of nitrophenol using ionic liquid stabilized gold. RSC Adv. 8, 38384–38390 (2018). https://doi.org/10.1039/c8ra07404f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. Balou, M.A. Khalilzadeh, D. Zareyee, An efficient and reusable nano catalyst for the synthesis of benzoxanthene and chromene derivatives. Sci. Rep. 9, 3605 (2019). https://doi.org/10.1038/s41598-019-40431-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for research and innovation, Ministry of Education in Saudi Arabia for funding this research work through the Project Number (IF2/PSAU/2022/01/22988)

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Faten Abou El Fadl wrote the main manuscript text and Manal F. Abou Talib prepared figures. All authors reviewed the manuscript."

Corresponding author

Correspondence to Faten Ismail Abou El Fadl.

Ethics declarations

Conflict of interest

The authors of this article do not have any conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadl, F.I.A.E., Taleb, M.F.A. Hybrid Alginate/TiO2/Ag Bio-nanocomposite Beads for Catalytic Hydrogenation of 2-Nitrophenol. J Inorg Organomet Polym 33, 2142–2153 (2023). https://doi.org/10.1007/s10904-023-02651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02651-7

Keywords

Navigation